1,019 research outputs found

    Crustal processes sustain Arctic abiotic gas hydrate and fluid flow systems

    Get PDF
    The Svyatogor Ridge and surroundings, located on the sediment-covered western flank of the Northern Knipovich Ridge, host extensive gas hydrate and related fluid flow systems. The fluid flow system here manifests in the upper sedimentary sequence as gas hydrates and free gas, indicated by bottom simulating reflections (BSRs) and amplitude anomalies. Using 2D seismic lines and bathymetric data, we map tectonic features such as faults, crustal highs, and indicators of fluid flow processes. Results indicate a strong correlation between crustal faults, crustal highs and fluid accumulations in the overlying sediments, as well as an increase in geothermal gradient over crustal faults. We conclude here that gas generated during the serpentinization of exhumed mantle rocks drive the extensive occurrence of gas hydrate and fluid flow systems in the region and transform faults act as an additional major pathway for fluid circulation

    Ferric Gluconate Yields Cost-Savings in Hemodialysis Patients with High Ferritin and Low TSAT: Results from the DRIVE Studies

    Get PDF
    Purpose: One third of hemodialysis patients have high serum ferritin levels and low transferrin saturation (TSAT). The purpose of this analysis was to determine the cost effectiveness of administering 1g of sodium ferric gluconate complex (SFGC: also referred to as ferric gluconate) to patients with serum ferritin \u3e500ng/mL and TSAT ≤25% based on the Dialysis Patients Response to IV Iron with Elevated Ferritin (DRIVE) study and its 6-week observational extension (DRIVE-II). In these studies, IV iron administration resulted in reduced epoetin requirements. Methods: Decision analysis was performed using a time horizon of 12 weeks, consistent with the combined duration of DRIVE and DRIVE II. Treatment effectiveness was based on mean increase in hemoglobin (Hb) for each group (SFGC plus epoetin or epoetin alone) in the intention to treat populations. Costs included drugs (SFGC and epoetin) and hospitalizations due to serious adverse events (SAEs) reported. The primary cost effectiveness measure was cost per g/dL of Hb increase at 12 weeks. Costs were computed from a Medicare perspective using projected 2007 reimbursements. Sensitivity analyses were performed to test the impact of using the safety population, median epoetin and SFGC doses, actual 2005 Medicare reimbursements, median increases in Hb, and SAE rate changes. The model was constructed using TreeAge Pro software. Results: Total cost per patient receiving SFGC plus epoetin was 3675perg/dLHbincrease,whilethetotalcostperpatientreceivingepoetinalonewas3675 per g/dL Hb increase, while the total cost per patient receiving epoetin alone was 5065 per g/dL Hb increase. Net savings for SFGC plus epoetin was $1390 per g/dL Hb increase over the 12 week period Sensitivity analyses affirmed the robustness of the model. Conclusion: Administering 1g of SFGC plus epoetin in patients with high ferritin and low TSAT as defined in the DRIVE studies resulted in significant cost-savings compared to epoetin alone

    Epitope tagging of endogenous genes in diverse human cell lines

    Get PDF
    Epitope tagging is a powerful and commonly used approach for studying the physical properties of proteins and their functions and localization in eukaryotic cells. In the case of Saccharomyces cerevisiae, it has been possible to exploit the high efficiency of homologous recombination to tag proteins by modifying their endogenous genes, making it possible to tag virtually every endogenous gene and perform genome-wide proteomics experiments. However, due to the relative inefficiency of homologous recombination in cultured human cells, epitope-tagging approaches have been limited to ectopically expressed transgenes, with the attendant limitations of their nonphysiological transcriptional regulation and levels of expression. To overcome this limitation, a modification and extension of adeno-associated virus-mediated human somatic cell gene targeting technology is described that makes it possible to simply and easily create an endogenous epitope tag in the same way that it is possible to knock out a gene. Using this approach, we have created and validated human cell lines with epitope-tagged alleles of two cancer-related genes in a variety of untransformed and transformed human cell lines. This straightforward approach makes it possible to study the physical and biological properties of endogenous proteins in human cells without the need for specialized antibodies for individual proteins of interest

    Ratiometric array of conjugated polymers–fluorescent protein provides a robust mammalian cell sensor

    No full text
    © 2016 American Chemical Society.Supramolecular complexes of a family of positively charged conjugated polymers (CPs) and green fluorescent protein (GFP) create a fluorescence resonance energy transfer (FRET)-based ratiometric biosensor array. Selective multivalent interactions of the CPs with mammalian cell surfaces caused differential change in FRET signals, providing a fingerprint signature for each cell type. The resulting fluorescence signatures allowed the identification of 16 different cell types and discrimination between healthy, cancerous, and metastatic cells, with the same genetic background. While the CP-GFP sensor array completely differentiated between the cell types, only partial classification was achieved for the CPs alone, validating the effectiveness of the ratiometric sensor. The utility of the biosensor was further demonstrated in the detection of blinded unknown samples, where 121 of 128 samples were correctly identified. Notably, this selectivity-based sensor stratified diverse cell types in minutes, using only 2000 cells, without requiring specific biomarkers or cell labeling

    Deoxyribonucleic Acid as a Universal Electrolyte for Bio-Friendly Light-Emitting Electrochemical Cells [in press]

    Get PDF
    In the search for bio and eco‐friendly light sources, light‐emitting electrochemical cells (LECs) are promising candidates for the implementation of biomaterials in their device architecture thanks to their low fabrication complexity and wide range of potential technological applications. In this work, the use of the DNA derivative DNA‐cetyltrimethylammonium (DNA‐CTMA) is introduced as the ion‐solvating component of the solid polymer electrolyte (SPE) in the active layer of solution‐processed LECs. The focus is particularly on the investigation of its electrochemical and ionic conductivity properties demonstrating its suitability for device fabrication and correlation with thin film morphology. Furthermore, upon blending with the commercially available emissive polymer Super Yellow, the structure property relationship between the microstructure and the ionic conductivity is investigated and yields an optimized LEC performance. The large electrochemical stability window of DNA‐CTMA enables a stable device performance for a variety of emitters covering the complete visible spectral range, thus highlighting the universal character of this naturally sourced SPE

    Synthetic Lethality of Chk1 Inhibition Combined with p53 and/or p21 Loss During a DNA Damage Response in Normal and Tumor Cells

    Get PDF
    Cell cycle checkpoints ensure genome integrity and are frequently compromised in human cancers. A therapeutic strategy being explored takes advantage of checkpoint defects in p53-deficient tumors in order to sensitize them to DNA-damaging agents by eliminating Chk1-mediated checkpoint responses. Using mouse models, we demonstrated that p21 is a key determinant of how cells respond to the combination of DNA damage and Chk1 inhibition (combination therapy) in normal cells as well as in tumors. Loss of p21 sensitized normal cells to the combination therapy much more than did p53 loss and the enhanced lethality was partially blocked by CDK inhibition. In addition, basal pools of p21 (p53 independent) provided p53 null cells with protection from the combination therapy. Our results uncover a novel p53-independent function for p21 in protecting cells from the lethal effects of DNA damage followed by Chk1 inhibition. As p21 levels are low in a significant fraction of colorectal tumors, they are predicted to be particularly sensitive to the combination therapy. Results reported in this study support this prediction

    Synthesis and Quantitative Structure–Activity Relationship of Imidazotetrazine Prodrugs with Activity Independent of O6-Methylguanine-DNA-methyltransferase, DNA Mismatch Repair and p53.

    Get PDF
    The antitumor prodrug Temozolomide is compromised by its dependence for activity on DNA mismatch repair (MMR) and the repair of the chemosensitive DNA lesion, O6-methylguanine (O6-MeG), by O6-methylguanine-DNA-methyltransferase (EC 2.1.1.63, MGMT). Tumor response is also dependent on wild-type p53. Novel 3-(2-anilinoethyl)-substituted imidazotetrazines are reported that have activity independent of MGMT, MMR and p53. This is achieved through a switch of mechanism so that bioactivity derives from imidazotetrazine-generated arylaziridinium ions that principally modify guanine-N7 sites on DNA. Mono- and bi-functional analogs are reported and a quantitative structure-activity relationship (QSAR) study identified the p-tolyl-substituted bi-functional congener as optimized for potency, MGMT-independence and MMR-independence. NCI60 data show the tumor cell response is distinct from other imidazotetrazines and DNA-guanine-N7 active agents such as nitrogen mustards and cisplatin. The new imidazotetrazine compounds are promising agents for further development and their improved in vitro activity validates the principles on which they were designed

    Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation

    Get PDF
    Purpose: Colorectal tumors (CRC) with microsatellite instability (MSI) show resistance to chemotherapy with 5-fluorouracil (5-FU), the most widely used pharmacological drug for CRC treatment. The aims of this study were to test the ability of quercetin (Q) and luteolin (L) to increase sensitivity of MSI CRC cells to 5-FU and characterize the dependence of the effects on cells´ p53 status. Methods: Two MSI human CRC derived cell lines were used, CO115 wild-type (wt) for p53 and HCT15 that harbors a p53 mutation. Apoptosis induction in these cells by 5-FU, Q and L alone and in combinations were evaluated by TUNEL and western. The dependence on p53 of the effects was confirmed by small interference RNA (siRNA) in CO115 cells and in MSI HCT116 wt and p53 knockout cells. Results: CO115 p53-wt cells are more sensitive to 5-FU than the p53 mutated HCT15. The combination treatment of 5-FU with L and Q increased apoptosis with a significant effect for Q in CO115. Both flavonoids increased p53 expression in both cell lines, an effect particularly remarkable for Q. The significant apoptotic enhancement in CO115 incubated with Q plus 5-FU involved the activation of the apoptotic mitochondrial pathway. Importantly, knockdown of p53 by siRNA in CO115 cells and p53 knockout in HCT116 cells totally abrogated apoptosis induction, demonstrating the dependence of the effect on p53 modulation by Q. Conclusion: This study suggests the potential applicability of these phytochemicals for enhancement 5-FU efficiency in MSI CRC therapy, especially Q in p53 wt tumors.CPRX was supported by the Foundation for Science and Technology (FCT), Portugal, through the grant SFRH/BD/27524/2006 and the work was supported by the FCT research grant PTDC/AGR-AAM/70418/2006

    Human surfactant protein D alters oxidative stress and HMGA1 expression to induce p53 apoptotic pathway in eosinophil leukemic cell line

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright: © 2013 Mahajan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant protein D (SP-D), an innate immune molecule, has an indispensable role in host defense and regulation of inflammation. Immune related functions regulated by SP-D include agglutination of pathogens, phagocytosis, oxidative burst, antigen presentation, T lymphocyte proliferation, cytokine secretion, induction of apoptosis and clearance of apoptotic cells. The present study unravels a novel ability of SP-D to reduce the viability of leukemic cells (eosinophilic leukemic cell line, AML14.3D10; acute myeloid leukemia cell line, THP-1; acute lymphoid leukemia cell lines, Jurkat, Raji; and human breast epithelial cell line, MCF-7), and explains the underlying mechanisms. SP-D and a recombinant fragment of human SP-D (rhSP-D) induced G2/M phase cell cycle arrest, and dose and timedependent apoptosis in the AML14.3D10 eosinophilic leukemia cell line. Levels of various apoptotic markers viz. activated p53, cleaved caspase-9 and PARP, along with G2/M checkpoints (p21 and Tyr15 phosphorylation of cdc2) showed significant increase in these cells. We further attempted to elucidate the underlying mechanisms of rhSP-D induced apoptosis using proteomic analysis. This approach identified large scale molecular changes initiated by SPD in a human cell for the first time. Among others, the proteomics analysis highlighted a decreased expression of survival related proteins such as HMGA1, overexpression of proteins to protect the cells from oxidative burst, while a drastic decrease in mitochondrial antioxidant defense system. rhSP-D mediated enhanced oxidative burst in AML14.3D10 cells was confirmed, while antioxidant, N-acetyl-L-cysteine, abrogated the rhSP-D induced apoptosis. The rhSP-D mediated reduced viability was specific to the cancer cell lines and viability of human PBMCs from healthy controls was not affected. The study suggests involvement of SP-D in host’s immunosurveillance and therapeutic potential of rhSP-D in the eosinophilic leukemia and cancers of other origins.Department of Biotechnology, Indi
    corecore