152 research outputs found

    Increasing crop production in Russia and Ukraine—regional and global impacts from intensification and recultivation

    Get PDF
    Russia and Ukraine are countries with relatively large untapped agricultural potentials, both in terms of abandoned agricultural land and substantial yield gaps. Here we present a comprehensive assessment of Russian and Ukrainian crop production potentials and we analyze possible impacts of their future utilization, on a regional as well as global scale. To this end, the total amount of available abandoned land and potential yields in Russia and Ukraine are estimated and explicitly implemented in an economic agricultural sector model. We find that cereal (barley, corn, and wheat) production in Russia and Ukraine could increase by up to 64% in 2030 to 267 million tons, compared to a baseline scenario. Oilseeds (rapeseed, soybean, and sunflower) production could increase by 84% to 50 million tons, respectively. In comparison to the baseline, common net exports of Ukraine and Russia could increase by up to 86.3 million tons of cereals and 18.9 million tons of oilseeds in 2030, representing 4% and 3.6% of the global production of these crops, respectively. Furthermore, we find that production potentials due to intensification are ten times larger than potentials due to recultivation of abandoned land. Consequently, we also find stronger impacts from intensification at the global scale. A utilization of crop production potentials in Russia and Ukraine could globally save up to 21 million hectares of cropland and reduce average global crop prices by more than 3%

    Bacterial expression and secretion of various single-chain Fv genes encoding proteins specific for a Salmonella serotype B O-antigen.

    Get PDF
    Active single-chain Fv molecules encoded by synthetic genes have been expressed and secreted to the periplasm of Escherichia coli using the ompA secretory signal. Four different constructs were developed to investigate the effects of peptide linker design and VL-VH orientation on expression, secretion, and binding to a Salmonella O-polysaccharide antigen. Peptide linker sequences derived from the elbow regions of the Fab molecule were used alone or in combination with the flexible (GGGGS)2 sequence. VL and VH domain order in the single chain molecules had a profound effect on the level of secretion but hardly influenced total expression levels, which were approximately 50 mg/liter, chiefly in the form of inclusion bodies. With VL in the NH2-terminal position, the amount of secreted product obtained was 2.4 mg/liter, but when VH occupied this position the yield was less than 5% of this value. Enzyme immunoassays of the four products showed domain order and linker sequence affected antigen binding by less than an order of magnitude. Attempts to express active Fv from dicistronic DNA were unsuccessful, but active Fv was obtained from single-chain Fv by enzymic cleavage at a site in the elbow linker peptide. The thermodynamic binding parameters of intact and cleaved single-chain Fvs determined by titration microcalorimetry were similar to those of bacterially produced Fab and mouse IgG

    Bures and Statistical Distance for Squeezed Thermal States

    Get PDF
    We compute the Bures distance between two thermal squeezed states and deduce the Statistical Distance metric. By computing the curvature of this metric we can identify regions of parameter space most sensitive to changes in these parameters and thus lead to optimum detection statistics.Comment: 15 pages, 1 figure (not included - obtain from Author) To appear in Journal of Physics

    Supporting Aboriginal and Torres Strait Islander Families to Stay Together from the Start (SAFeST Start): Urgent call to action to address crisis in infant removals

    Get PDF
    Reducing the rate of over-representation of Aboriginal and Torres Strait Islander children in out-of-home care (OOHC) is a key Closing the Gap target committed to by all Australian governments. Current strategies are failing. The “gap” is widening, with the rate of Aboriginal and Torres Strait Islander children in OOHC at 30 June 2020 being 11 times that of non-Indigenous children. Approximately, one in five Aboriginal and Torres Strait Islander children entering OOHC each year are younger than one year. These figures represent compounding intergenerational trauma and institutional harm to Aboriginal and Torres Strait Islander families and communities. This article outlines systemic failures to address the needs of Aboriginal and Torres Strait Islander parents during pregnancy and following birth, causing cumulative harm and trauma to families, communities and cultures. Major reform to child and family notification and service systems, and significant investment to address this crisis, is urgently needed. The Family Matters Building Blocks and five elements of the Aboriginal and Torres Strait Islander Child Placement Principle (Prevention, Participation, Partnerships, Placement and Connection) provide a transformative foundation to address historical, institutional, well-being and socioeconomic drivers of current catastrophic trajectories. The time for action is now

    Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide

    Get PDF
    Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN.Fondo Especial de la Educación Superior/[0500-13]/FEES/Costa RicaFondo Especial de la Educación Superior/[0504-13]/FEES/Costa RicaFondo Especial de la Educación Superior/[0505-13]/FEES/Costa RicaFondo Especial de la Educación Superior/[0248-13]/FEES/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP)UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiologí

    Vaccines based on the cell surface carbohydrates of pathogenic bacteria

    Full text link

    Restoring nature at lower food production costs

    No full text
    Primary data for the present analysis was derived from open source domains and was compiled through a bottom up approach to provide a global coverage of financial information on costs of agricultural production for ten major crops. Data edit, processing and analysis was conducted with the use of the statistical software R and the package "dplyr"

    Restoring nature at lower food production costs

    Get PDF
    Growing competition for land, water and energy call for global strategies ensuring affordable food production at minimum environmental impacts. Economic modelling studies suggest trade-off relationships between environmental sustainability and food prices. However, evidence based on empirical cost-functions supporting such trade-offs remains scarce at the global level. Here, based on cost engineering modelling, we show that optimised spatial allocation of 10 major crops, would reduce current costs of agricultural production by approximately 40% while improving environmental performance. Although production inputs per unit of output increase at local scales, a reduction of cultivated land of 50% overcompensates the slightly higher field-scale costs enabling improved overall cost-effectiveness. Our results suggest that long-run food prices are bound to continue to decrease under strong environmental policies. Policies supporting sustainability transitions in the land sector should focus on managing local barriers to the implementation of high-yield regenerative agricultural practices delivering multiple regional and global public goods
    corecore