298 research outputs found

    A cloud gaming framework for dynamic graphical rendering towards achieving distributed game engines

    Get PDF
    Cloud gaming in recent years has gained growing success in delivering games-as-a-service by leveraging cloud resources. Existing cloud gaming frameworks deploy the entire game engine within Virtual Machines (VMs) due to the tight-coupling of game engine subsystems (graphics, physics, AI). The effectiveness of such an approach is heavily dependant on the cloud VM providing consistently high levels of performance, availability, and reliability. However this assumption is difficult to guarantee due to QoS degradation within, and outside of, the cloud - from system failure, network connectivity, to consumer datacaps - all of which may result in game service outage. We present a cloud gaming framework that creates a distributed game engine via loose-coupling the graphical renderer from the game engine, allowing for its execution across cloud VMs and client devices dynamically. Our framework allows games to operate during performance degradation and cloud service failure, enabling game developers to exploit heterogeneous graphical APIs unrestricted from Operating System and hardware constraints. Our initial experiments show that our framework improves game frame rates by up to 33% via frame interlacing between cloud and client systems

    Unexpected nucleophilic participation and rearrangement of DBU in reactions with saccharin derivatives

    Get PDF
    DBU attacks saccharin derivatives with subsequent rearrangement to give rise to 3-[3'-(1"-azepin-2"-onyl)propylamino]-1,2-benzisothiazole-1,1-dioxide 2 after work-up

    On covers of cyclic acts over monoids

    No full text
    In (Bull. Lond. Math. Soc. 33:385–390, 2001) Bican, Bashir and Enochs finally solved a long standing conjecture in module theory that all modules over a unitary ring have a flat cover. The only substantial work on covers of acts over monoids seems to be that of Isbell (Semigroup Forum 2:95–118, 1971), Fountain (Proc. Edinb. Math. Soc. (2) 20:87–93, 1976) and Kilp (Semigroup Forum 53:225–229, 1996) who only consider projective covers. To our knowledge the situation for flat covers of acts has not been addressed and this paper is an attempt to initiate such a study. We consider almost exclusively covers of cyclic acts and restrict our attention to strongly flat and condition (P) covers. We give a necessary and sufficient condition for the existence of such covers and for a monoid to have the property that all its cyclic right acts have a strongly flat cover (resp. (P)-cover). We give numerous classes of monoids that satisfy these conditions and we also show that there are monoids that do not satisfy this condition in the strongly flat case. We give a new necessary and sufficient condition for a cyclic act to have a projective cover and provide a new proof of one of Isbell’s classic results concerning projective covers. We show also that condition (P) covers are not unique, unlike the situation for projective covers

    Covers of acts over monoids II

    Full text link
    In 1981 Edgar Enochs conjectured that every module has a flat cover and finally proved this in 2001. Since then a great deal of effort has been spent on studying different types of covers, for example injective and torsion free covers. In 2008, Mahmoudi and Renshaw initiated the study of flat covers of acts over monoids but their definition of cover was slightly different from that of Enochs. Recently, Bailey and Renshaw produced some preliminary results on the `other' type of cover and it is this work that is extended in this paper. We consider free, divisible, torsion free and injective covers and demonstrate that in some cases the results are quite different from the module case

    Lithium-ion battery second life:pathways, challenges and outlook

    Get PDF
    Net zero targets have resulted in a drive to decarbonise the transport sector worldwide through electrification. This has, in turn, led to an exponentially growing battery market and, conversely, increasing attention on how we can reduce the environmental impact of batteries and promote a more efficient circular economy to achieve real net zero. As these batteries reach the end of their first life, challenges arise as to how to collect and process them, in order to maximise their economical use before finally being recycled. Despite the growing body of work around this topic, the decision-making process on which pathways batteries could take is not yet well understood, and clear policies and standards to support implementation of processes and infrastructure are still lacking. Requirements and challenges behind recycling and second life applications are complex and continue being defined in industry and academia. Both pathways rely on cell collection, selection and processing, and are confronted with the complexities of pack disassembly, as well as a diversity of cell chemistries, state-of-health, size, and form factor. There are several opportunities to address these barriers, such as standardisation of battery design and reviewing the criteria for a battery’s end-of-life. These revisions could potentially improve the overall sustainability of batteries, but may require policies to drive such transformation across the industry. The influence of policies in triggering a pattern of behaviour that favours one pathway over another are examined and suggestions are made for policy amendments that could support a second life pipeline, while encouraging the development of an efficient recycling industry. This review explains the different pathways that end-of-life EV batteries could follow, either immediate recycling or service in one of a variety of second life applications, before eventual recycling. The challenges and barriers to each pathway are discussed, taking into account their relative environmental and economic feasibility and competing advantages and disadvantages of each. The review identifies key areas where processes need to be simplified and decision criteria clearly defined, so that optimal pathways can be rapidly determined for each end-of-life battery

    Impressing for Success: A Gendered Analysis of a Key Social Capital Accumulation Strategy

    Get PDF
    Social capital theory assesses the career benefits that accrue to individuals from the stock of relationships they have. Such benefits can be in the form of guidance and advice, access to key projects and assignments and help with setting up business deals. However, when assessing whether such career-enhancing resources are available equally to men and women, we find that gender impacts on the access to and accumulation of social capital. The article seeks to address two key research questions. The first is whether women are aware of the need to accumulate social capital to advance their careers and the second is whether they use impression management techniques in order to assist them in doing this. Findings are reported from a study in an international consulting firm with 19 female consultants. In respect of research question one the findings indicate that women in the sample are aware of the need to accumulate social capital to advance their careers; with particular emphasis being placed on the importance of gaining access to influential sponsors. In respect of research question two, the findings confirm that women in the sample do perceive the necessity to utilise impression management techniques to help them to accumulate social capital. This is done in a defensive way and is linked to ensuring that one is seen as ambitious, likable and available. It is argued that these are key organizational norms, and it is perceived that in order to accumulate social capital, women need to actively work to dispel the negative stereotypes that attach to them because of their gender. The article calls for greater recognition of the impact that masculine organizational cultures have on the career development of women, who not only have to perform at a high level but are also required to expend additional energy conforming to masculine organizational cultures they have had little say in creating

    “Janus” Calixarenes: Double-Sided Molecular Linkers for Facile, Multianchor Point, Multifunctional, Surface Modification

    Get PDF
    We herein report the synthesis of novel “Janus” calix[4]arenes bearing four “molecular tethering” functional groups on either the upper or lower rims of the calixarene. These enable facile multipoint covalent attachment to electrode surfaces with monolayer coverage. The other rim of the calixarenes bear either four azide or four ethynyl functional groups, which are easily modified by the copper(I)-catalyzed azide–alkyne cycloaddition reaction (CuAAC), either pre- or postsurface modification, enabling these conical, nanocavity reactor sites to be decorated with a wide range of substrates to impart desired chemical properties. Redox active species decorating the peripheral rim are shown to be electrically connected by the calixarene to the electrode surface in either “up” or “down” orientations of the calixarene
    corecore