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Abstract
Cloud gaming in recent years has gained growing success in
delivering games-as-a-service by leveraging cloud resources.
Existing cloud gaming frameworks deploy the entire game en-
gine within Virtual Machines (VMs) due to the tight-coupling
of game engine subsystems (graphics, physics, AI). The ef-
fectiveness of such an approach is heavily dependant on the
cloud VM providing consistently high levels of performance,
availability, and reliability. However this assumption is diffi-
cult to guarantee due to QoS degradation within, and outside
of, the cloud - from system failure, network connectivity, to
consumer datacaps - all of which may result in game service
outage. We present a cloud gaming framework that creates a
distributed game engine via loose-coupling the graphical ren-
derer from the game engine, allowing for its execution across
cloud VMs and client devices dynamically. Our framework
allows games to operate during performance degradation and
cloud service failure, enabling game developers to exploit
heterogeneous graphical APIs unrestricted from Operating
System and hardware constraints. Our initial experiments
show that our framework improves game frame rates by up to
33% via frame interlacing between cloud and client systems.

1 Introduction

Video games are now the largest entertainment industry in
the world, growing to $143.5b revenue in 2020 [1] with the
PC distribution platform; Steam, reaching over 22 million
concurrent players alone [2]. Cloud gaming - a paradigm
whereby gaming is delivered as a service by leveraging cloud
resources [3] - has begun to gain increasing popularity in
society, providing advantages over traditional desktop and
console gaming including lower installation times, reduced
hardware cost, greater device portability, and the ability to
leverage cloud resources for higher graphical quality [3].

A design principle shared across all existing cloud gaming
frameworks [3–7] is that service is provisioned by deploy-
ing a game instance (an instantiation of a game program)

within a Virtual Machine (VM), whereby game state is ma-
nipulated and resulting frames are encoded and streamed to a
consumer client device based on user input [8]. This approach
is necessary primarily due to the game engine architecture:
Monolithic systems with multiple subsystems tightly coupled
with each other and the underlying operating system to facili-
tate aspects of graphics, physics, audio, and AI [9].

However such a design results in limitations within cloud
gaming due to a strong dependence on performance and de-
pendability of the cloud game instance and its connection to
client devices. In the cloud, game instances deployed within
VMs are exposed to a plethora of detrimental datacenter be-
haviors, spanning interference [10], resource contention [11],
and failures [12]. Such behaviors - in isolation or in tandem
- result in Quality of Service (QoS) degradation in terms of
lower interactivity and frames per second (FPS), lower graph-
ical quality (lower resolution, bitrate), as well as reduced
availability and reliability [13]. While various approaches
have been proposed to alleviate such issues [4, 14, 15], they
all assume a stable network connection established between
the client device and the cloud game instance. Thus, such
approaches are unable to tolerate cloud outages, prolonged
network disconnection, or consumer data caps, resulting in
consumers unable to access games entirely.

One approach to overcome these limitations would be to
dynamically distribute all game engine subsystems across
the cloud - and is the overarching research vision for our
work. A distributed game engine would allow for dynamic
deployment and reconfiguration of all subsystems across both
cloud and client systems in response to the specified QoS re-
quirements. However this is currently not possible in existing
game engine architectures due to tight-coupling with their
underlying platforms [16]. Taking graphical rendering (a core
game subsystem) as an example, game systems are developed
to use specific graphics APIs (OpenGL, Vulkan, etc.), and
require specialized developer knowledge to take advantage
of advanced hardware features (e.g. real-time ray-tracing).
Thus it is not possible to transition to other graphics APIs and
platforms without significant development effort and time.
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In this paper we present a cloud gaming framework that
enables loose-coupling between the game engine and the
graphical renderer, representing the first distributed game en-
gine designed for the cloud. Our approach allows for dynamic
run-time rendering across cloud and client systems using het-
erogeneous graphics APIs (Vulkan, OpenGL) in response to
changing performance and network conditions. Our specific
contributions are as follows:

• Creation of a distributed cloud gaming framework
whereby graphical rendering is performed by the game
instance via submitting generic graphics commands to
the framework which automatically converts commands
into specific graphics API function calls in cloud and
client systems based on QoS and hardware constraints.
Our design reduces game engine graphics development
complexity across heterogeneous platforms.

• Empirical demonstration that our framework enhances
game instance performance and fault-tolerance via ren-
derer hot-swapping and frame interlacing. Our results
show that cooperative client and cloud-based rendering
can improve game frame rates by 33% against client-side
or cloud-side rendering whilst using 1.1-4.0 Mbps

2 Background

Game Engines: A term popularized in the 1990’s [17, 18],
game engines are a composition of subsystems working in
tandem to facilitate real-time interactive simulation for enter-
tainment purposes [19]. Game engines are used to instantiate
a game instance, which provide coded gameplay logic that uti-
lizes generic data-driven systems provided by the game engine
to perform a game loop [19]. As shown in Figure 1, the game
loop includes a set of distinct stages, each executed once per
frame, and will interact with the operating system and hard-
ware in different ways. Handle Input polls input events from
user devices, Update Game State advances virtual world state
to the next frame and prepares for rendering loading for any
required assets, Render Game State interacts with the graphics
hardware via the graphics API to generate an image to be dis-
played on the screen, ending with Swap Buffers displaying the
computed image. Modern game engines are designed as fully-
fledged frameworks, such as Unity [20] and Unreal Engine
4 [21], using different architecture paradigms (event-driven,
data-driven) [22, 23]. Notably, most modern game engines
comprise four fundamental subsystems - physics, sound, input
handling and graphics [16] [24].

Renderer: The graphical renderer1 is the game engine sub-
system responsible for performing graphical operations to
display geometry, lighting and texture information [8]. A ren-
derer exploits graphic APIs such as OpenGL [25], Vulkan
[26], DirectX [27] and WebGPU [28] to interface with the

1Which we refer to as the renderer
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Figure 1: Depiction of standard game loop.

graphics hardware. Graphics hardware (such as GPUs) fol-
low a strict computation pipeline, as shown in Figure 2, with
each graphics API using a different method to manipulate or
interface graphics pipeline stages. If the graphics API can-
not modify a specific stage (i.e. proprietary), the hardware
is responsible for performing the specific stage. Operating
System support for a given graphics API is determined by
the organization that defines it, leading to reduced portability
between platforms as a graphics API may only work for a
subset of hardware vendors, and is especially true for Game
Consoles APIs, DirectX [27] and Metal [29]. Thus, it takes
considerable developer experience and effort to build games
to be Operating System agnostic. Specific graphics features
(such as real-time raytracing) are currently only accessible on
specific hardware architectures [30].

Cloud gaming: Cloud gaming is a paradigm whereby
cloud-resources are provisioned as a service for gaming pur-
poses, interacted by users via a thin client [31]. Cloud gaming
enables game engines to be deployed and executed entirely
within the cloud, running as a cloud game instance within
an isolated environment such as a VM [3, 5–7]. As depicted
in Figure 3, user inputs are streamed from a device to the
cloud game instance, which are used to update and render the
game state. Once the frame has been rendered in the cloud,
it is compressed via a video codec algorithm and streamed
to the client to be displayed on the screen. Cloud gaming
provides several key advantages over traditional gaming on
dedicated consumer hardware, including greater device and
game instance portability [32], reduced location restrictions
and power consumption for consumer devices, and access to
cutting-edge graphics features such as ray tracing [3].
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Figure 2: Graphics Pipeline (Grey denotes limited/no developer control).
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Figure 3: Depiction of Cloud Gaming Architecture

Cloud gaming limitations: Delivering gaming service via
existing frameworks [3, 5, 7] are strongly dependant on the
operational performance and dependability of the cloud game
instance and its connection to the consumer. Game instances
deployed within virtualized datacenters will encounter detri-
mental phenomena including co-location performance inter-
ference [10], high contention [11]2, and frequent software
and hardware failure [12]. All of these behaviors result in re-
duced QoS, measured in terms of interactivity, FPS, reduced
graphics quality, as well as reduced availability and reliability.

3 Related Work

Various cloud gaming approaches have been proposed to en-
hance game instance operation [33–37]. Of relevance to this
work are all empirically evaluated gaming and streaming sys-
tems which deploy game instances in cloud VMs. Huang et
al. [3] proposed a streaming system that executes the game
instance in a cloud VM, with Audio-Visual data streamed to
user thin-clients. Polled user input is encoded into a custom
protocol sent to the VM to update game state and frame ren-
dering which is transmitted, decoded, and displayed on the
client. Shi et al. [38] proposed a streaming framework which
allows post-processing effects to be computed on the client de-
vice with the majority of the game computation and rendering
performed on the cloud. The work uses rendering viewpoint,
pixel depth and camera motion to perform image warping to
improve the quality and encoded efficiency of the streamed
video. Commercial cloud gaming frameworks such as Google
Stadia [7] and Microsoft Project xCloud [6] also utilize cloud
VMs, however due to the closed-source nature of projects it is
currently unknown how game engines are modified to execute
within their frameworks using the Vulkan graphics API [26].
Lee et al. [4] proposed a system which actively speculates
user thin-client input, and predicts a subset of next possible
frames for streaming upon receiving input. Such work helps
tolerate network latency due to reduced computational de-
lay between receiving input and frame streaming, however
incurs substantial cloud VM computation. Command-based
execution for rendering and input handling over the network
has been used in the X11 protocol [39], however is limited to
sending display commands to client machines as opposed to
graphics rendering.

2Outages are common for Day 1 major game releases expansions.
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Figure 4: Overview of CloudRend component.

4 System Design

Overview: We propose a cloud gaming framework that cre-
ates a distributed game engine that loosely-couples the ren-
derer subsystems from other subsystems. The renderer is
loosely-coupled by removing the game code’s ability to per-
form direct function call access to specific graphics APIs.
Instead, the game code generates generic graphics commands
enqueued to a CloudRend component that interprets and con-
verts commands into specific graphics API function calls to
render across cloud or client systems, driven by QoS and
hardware constraints.

Rationale: The advantage of using general graphics com-
mands is two-fold: First, our framework only requires to map
specific graphics API calls once, after which game code can
now leverage multiple graphics APIs, thus reducing and sim-
plifying development effort to implement specific graphics
function calls for every new game engine. Second, it allows
for ready transmission and replication of the renderer across
client devices and cloud VMs comprising heterogeneous Op-
erating Systems and hardware constraints.

CloudRend: The CloudRend component is responsible
for determining and managing game instance rendering for
game code. CloudRend can execute as a process in a single
game instance, or be deployed in its own VM to facilitate
multiple game instances. CloudRend comprises two main
sub-components as shown in Figure 4. The Game Instance
Manager interprets, transmits, and converts generic graphical
commands from the game code into a specific graphics API
for rendering across the system. Mitigation is responsible
for selecting and executing mechanisms to improve game
instance QoS due to performance degradation and failure. We
have focused on developing three core generic graphical com-
mands for CloudRend as shown in Table 1. These commands
were chosen as they are fundamental across all graphics APIs:
RenderClear for screen clearing at frame start, required for
more advance functions RenderModel for drawing geometry
and RenderLightSet for large computation (per pixel lighting).

Phases: CloudRend uses four phases shown in Figure 5.
Buffering: At the beginning of the game instance, the

game code requests CloudRend to create a Command Buffer.
The Command Buffer is a small block of memory used to



Description CloudRend OpenGL Vulkan

Clear screen with color;
optionally clear depth buffer RenderClear() glClearColor(), glClear() vkCmdBeginRenderPass()

Draws referenced model to
screen with model matrix RenderModel()

glBindBuffer(), glDrawElements(),
glUniformMatrix4fv()

vkCmdBindVertexBuffers(), vkCmdDrawIndexed(),
vkCmdPushConstants(), vkCmdBindIndexBuffer()

Set position and color of
global lighting setup RenderLightSet()

glUniform3fv(),
glUniform4fv() vkCmdPushConstants()

Table 1: CloudRend generic graphics commands and graphics API calls.

store command-information tuples responsible for encoding
generic graphics commands along with the relevant infor-
mation required for processing. For example, during a given
game loop iteration, the game code executes command Ren-
derModel(x,y) to render a model reference x with matrix y.

Discovery: Upon game instance instantiation and execu-
tion, the QoS Monitor will determine hardware constraints
and periodically measure game instance performance for ren-
dering within client devices or the cloud VM. If failure or
performance degradation is detected, CloudRend will activate
Mitigation to enhance game instance QoS.

Conversion: After game code has completed state updates
and render commands required for the current game loop, all
graphics commands in Command Buffer are transmitted by
CloudRend to the Graphic Converter in the client device or
cloud VM. Commands are automatically translated via a jump
table that corresponds to one or more graphics API-specific
procedure calls that are emitted with required data paired with
command type. RenderModel() called in Vulkan is converted
to vkCmdBindVertexBuffers() and vkCmdDraw() as shown in
Table 1. The jump table allows command execution to scale
if new commands are required they can just be appended to
this table with a corresponding command type for lookup.

Drawing: Our framework has two methods for image draw-
ing: Co-location (game code and rendering performed in the
same system) iterates over command-information tuples, exe-
cutes graphics API function calls, and displays the produced
image. Distributed (rendering performed in a different in-
stances from game code) encodes and streams the image from
the remote renderer to game code and drawn to client window.

Mitigation: CloudRend exploits renderer and game engine
distribution to enhance game instance QoS via two features:

Interlacing: Enables multiple renderers distributed across
the client device and cloud VM to collaboratively render
frames based on game instance performance. The propor-
tion of frames per second rendered by client or cloud systems
can be user-defined, or dynamically calculated based on game
instance performance (FPS), network performance (latency,
bandwidth), constraints (client hardware architecture). For ex-
ample, if the CloudRend QoS Monitor detects good network
performance between the client and cloud, an increasing pro-
portion of frames will be rendered within the cloud, and vice
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Figure 5: Cloud gaming framework in operation.

versa for degraded network conditions (and entirely client-
side in the event of no network access).

Hot-Swapping: Allows dynamic run-time renderer recon-
figuration with no impact on game code execution. In the
event a graphics API error, we redefine enabled extensions
or alternatively swap to another graphics API. A game in-
stance using a cloud renderer can have the client renderer
on warm-standby to activate upon failure detection or net-
work connection loss. A benefit is not needing to restart the
game instance upon major graphics reconfiguration (i.e. Anti-
aliasing, Tessellation etc.) currently required for the majority
of current games. While we have implemented this feature
(we observed no observable frame rate difference when swap-
ping graphics APIs during game instance execution), it has
been omitted from evaluation due to space limitations. Even
with such mitigation in place, severe scenarios (cloud outage,
network disconnection) will still reduce graphical quality due
to resource and/or hardware constraints on client systems.
We believe that tolerating such scenarios is an acceptable
alternative compared to service loss.

5 Preliminary Evaluation

For our experiments we have measured the performance and
resource-efficiency of our proposed cloud gaming framework
within various operational scenarios.



Figure 6: Rendered scenes: Low (100 vertices), High (200,000 vertices).

Setup: The cloud VM was created via deploying a VM in
a desktop machine (i7-7700HQ, 16GB RAM, Intel HD 630),
and using a Raspberry Pi 4 as the client device. The selected
experiment scenarios entails our framework executing a game
instance where the client device contains both the game code
and CloudRend, while the cloud VM contains CloudRend.
Network communication between the client and cloud was
performed over a wireless network to introduce greater la-
tency variability between 3ms - 100ms. The Cloud VM was
configured to only use Vulkan, and the client device OpenGL
(Vulkan is currently not supported on the Raspberry Pi). The
zlib library was used to compress streamed images from the
cloud VM, reducing its size by up to 80%. The framework
was configure at different frame interlacing ratios, ranging
between 100% client (rendering performed on client device),
100% cloud (rendering on cloud VM), and client-cloud ratios
of 25-75%, 50-50%, and 75-25%. Each experiment entailed
the game instance executing two 1280x720 scenes for 5,000
frames at 60FPS for different levels of graphical quality as
depicted in Figure 6: low (100 vertices) and high (200,000
vertices) both using per pixel diffuse lighting in order to create
additional computation within the system.

Frame Rate: Figure 7 shows the game instance frame rate
using different framework interlacing ratios. We observed
that the client device is capable of achieving a frame rate of
60 FPS for low vertices scenes, and degrades to 41 FPS with
increased cloud interlacing. This is because the client device
is sufficiently powerful to render the geometry of low vertices
scenes faster than the latency of transmitting the rendered and
encoded images from the cloud VM. However, this pattern
changes for high vertices scenes, where we found 50/50%
frame interlacing gave a 33% improvement over cloud or
client-only rendering. Such improvement is due to the cloud
renderer providing faster rendering for complex geometry
scenes resultant of greater compute power, however still in-
curs latency issues for Cloud VM transmission. However,
we believe that cloud rendering performance will increase
proportionally to scene complexity, as we identified through
experiments that latency stemming from the cloud VM was
not due to rendering or CloudRend, but due to the transport
system that transfers the image into GPU memory creating a
performance bottleneck. Hence, our initial results indicate the
existence of a trade-off between between game instance ren-
dering on a slower, yet direct client device rendering against
a faster, yet latency induced cloud VM renderer.

0

10

20

30

40

50

60

70

80

Local 25% Cloud 50% Cloud 75% Cloud Cloud

Fr
am

e
ra

te
 (

FP
S)

Low Vertices Scene

High Vertices Scene

Figure 7: Comparison of frame rate during frame interlacting.

0

50

100

150

200

Local 25%
Cloud

50%
Cloud

75%
Cloud

Cloud

N
e

tw
o

rk
 D

at
a 

(M
b

)

(a) Total Network Usage

0

0.5

1
1.5

2
2.5

3

3.5

4

4.5

Local 25%
Cloud

50%
Cloud

75%
Cloud

Cloud

T
h

ro
u

gh
p

u
t 

(M
b

p
s)

(b) Throughput

Figure 8: Cloud gaming network characteristics

Network: We found that outbound network traffic (i.e.
generic graphics commands to the Cloud VM) sent 12-32kbs.
For inbound network traffic of images to the client device,
we observed that when leveraging the cloud VM, our ap-
proach attained network throughput between 1.1Mpbs-4Mbps
as shown in 8b. We observed that 50-50% interlacing achieved
the highest network throughput compared to 100% cloud
rendering at 3.6Mbps. This is because 50-50% interlacing
achieves the highest frame rate as shown in Figure 7, and
thus capable of streaming more images per second. Increased
cloud rendering results in a linear increase in network data
as shown in Figure 8a. As compared to other cloud gaming
approaches, network usage will be higher as command buffer
size increases, especially for games at higher frame rates.

6 Conclusions

All existing Cloud gaming frameworks deploy and stream
game engine instances using VMs. However such design en-
counters issues with performance degradation and failure in
the cloud and between cloud and consumers. In this paper we
presented a cloud gaming framework that dynamically dis-
tributes the game engine via loose-coupling of the graphical
renderer from the game engine, allowing for cloud-client ren-
dering. We have empirically demonstrated that our framework
improves frame rates against solely cloud or client rendering.
Results indicate that future cloud gaming engines (desktop,
mobile, VR) may benefit from further distribution, allowing
deployment in cloud-client, cloud-cloud, or fog-cloud based
on performance and graphical quality trade offs.



7 Discussion

While have successfully distributed the game engine within
the cloud, there are some clear improvements to the design
and implementation of our cloud gaming framework.

Performance: An improved frame display system can be
created for better compression size and speed of streaming
frames from the cloud VM using a video codec such as
H.265/HEVC. The network implementation can also be opti-
mized; during experiments we discovered that performance
bottlenecks from the cloud VM were not due to framework
rendering, but from our networking architecture using TCP
streams that blocked the game loop while the client waits for
the VM to send a computed frame. This could be improved
by multi-threading the network system so the renderer does
not block the main game loop while waiting to receive cloud
frames, allowing more command buffers to be generated, thus
increasing the cloud rendering framerate.

Graphics APIs: While we have currently implemented
generic graphic commands in OpenGL and Vulkan, we aim
to include additional commands and graphics APIs in future
work. A long-standing issue in the games industry is the
secretive nature of in-house game engine development which
have gotten increasingly larger and complex. We hope this
research would allow development of game engines across
platforms to be considerably simpler and easier.

Multi-instance: Although we have focused on a single
client game instance connecting to dedicated cloud VM simi-
lar to existing cloud gaming frameworks, we believe that the
CloudRend component can be designed to facilitate multiple
clients, allowing for multi-tenant rendering across entirely dif-
ferent game codes currently not explored. We aim to explore
alternative game instance deployment scenarios (e.g. code
deployed on a cloud VM with client-side rendering). Multiple
Cloud VM instances could be deployed for a single client to
maximize game instance performance and fault tolerance in
the event of instance failure.

Mitigation: While we have demonstrated that frame inter-
lacing can help tolerate performance degradation and failure,
we plan to evaluate hotswapping and have mechanisms dy-
namically adapt their operation in response changing system
and network conditions. Calculating the optimal ratio for
frame interlacing between the cloud and client based on moni-
toring and modelling game instance and network performance
is likely a sensible direction to investigate.

Vision: We intend to expand our cloud gaming framework
to encompass other game engine subsystems such as the
physics, animation and artificial intelligence. We are inter-
ested in soliciting feedback on interesting challenges posed
with run-time discovery and orchestration of highly loosely-
coupled and distributed game engine subsystems. This chal-
lenge is difficult as subsystems such as physics require strict
timing requirements within the game code, and latency be-
tween networked subsystems between the cloud instances.
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