35 research outputs found

    Impact of Region-of-Interest Delineation Methods, Reconstruction Algorithms, and Intra- and Inter-Operator Variability on Internal Dosimetry Estimates Using PET

    Get PDF
    Purpose: Human dosimetry studies play a central role in radioligand development for positron emission tomography (PET). Drawing regions of interest (ROIs) on the PET images is used to measure the dose in each organ. In the study aspects related to ROI delineation methods were evaluated for two radioligands of different biodistribution (intestinal vs urinary). Procedures: PET images were simulated from a human voxel-based phantom. Several ROI delineation methods were tested: antero-posterior projections (AP), 3D sub-samples of the organs (S), and a 3D volume covering the whole-organ (W). Inter- and intra-operator variability ROI drawing was evaluated by using human data. Results: The effective dose estimates using S and W methods were comparable to the true values. AP methods overestimated (49 %) the dose for the radioligand with intestinal biodistribution. Moreover, the AP method showed the highest inter-operator variability: 11 ± 1 %. Conclusions: The sub-sampled organ method showed the best balance between quantitative accuracy and inter- and intra-operator variability

    Bilastine vs. hydroxyzine : occupation of brain histamine H-receptors evaluated by positron emission tomography in healthy volunteers

    Get PDF
    A close correlation exists between positron emission tomography (PET)-determined histamine H-receptor occupancy (HRO) and the incidence of sedation. Antihistamines with HRO <20% are classified as non-sedating. The objective was to compare the HRO of bilastine, a second generation antihistamine, with that of hydroxyzine. This randomized, double-blind, crossover study used PET imaging with [ 11 C]-doxepin to evaluate HRO in 12 healthy males (mean age 26.2 years), after single oral administration of bilastine (20 mg), hydroxyzine (25 mg) or placebo. Binding potentials and HROs were calculated in five cerebral cortex regions of interest: frontal, occipital, parietal, temporal, insula. Plasma bilastine concentrations, subjective sedation (visual analogue scale), objective psychomotor performance (digital symbol substitution test), physiological variables and safety (adverse events, AEs), were also evaluated. The mean binding potential of all five regions of interest (total binding potential) was significantly greater with bilastine than hydroxyzine (mean value 0.26 vs. 0.13, P < 0.01; mean difference and 95% CI −0.130 [−0.155, 0.105]). There was no significant difference between bilastine and placebo. Overall HRO by bilastine was significantly lower than that by hydroxyzine (mean value −3.92% vs. 53.95%, P < 0.01; mean difference and 95% CI 57.870% [42.664%, 73.075%]). There was no significant linear relationship between individual bilastine plasma concentrations and total binding potential values. No significant between-treatment differences were observed for sedation and psychomotor performance. Twenty-six non-serious AEs were reported. Sleepiness or sedation was not reported with bilastine but appeared in some subjects with hydroxyzine. A single oral dose of bilastine 20 mg had minimal HRO, was not associated with subjective sedation or objective impairment of psychomotor performance and was devoid of treatment-related sedative AEs, thus satisfying relevant subjective, objective and PET criteria as a non-sedating antihistamine

    Quantification of amyloid PET for future clinical use: a state-of-the-art review

    Get PDF
    Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods

    Quantification of amyloid PET for future clinical use: a state-of-the-art review

    Get PDF
    Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods

    Targeted next-generation sequencing in steroid-resistant nephrotic syndrome : mutations in multiple glomerular genes may influence disease severity

    Get PDF
    Altres ajuts: Fundación Renal Iñigo Álvarez de Toledo (FRIAT)Genetic diagnosis of steroid-resistant nephrotic syndrome (SRNS) using Sanger sequencing is complicated by the high genetic heterogeneity and phenotypic variability of this disease. We aimed to improve the genetic diagnosis of SRNS by simultaneously sequencing 26 glomerular genes using massive parallel sequencing and to study whether mutations in multiple genes increase disease severity. High-throughput mutation analysis was performed in 50 SRNS and/or focal segmental glomerulosclerosis (FSGS) patients, a validation cohort of 25 patients with known pathogenic mutations, and a discovery cohort of 25 uncharacterized patients with probable genetic etiology. In the validation cohort, we identified the 42 previously known pathogenic mutations across NPHS1, NPHS2, WT1, TRPC6, and INF2 genes. In the discovery cohort, disease-causing mutations in SRNS/FSGS genes were found in nine patients. We detected three patients with mutations in an SRNS/FSGS gene and COL4A3. Two of them were familial cases and presented a more severe phenotype than family members with mutation in only one gene. In conclusion, our results show that massive parallel sequencing is feasible and robust for genetic diagnosis of SRNS/FSGS. Our results indicate that patients carrying mutations in an SRNS/FSGS gene and also in COL4A3 gene have increased disease severity

    Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis.

    Get PDF
    OBJECTIVE: Uncontrolled studies of mesenchymal stem cells (MSCs) in multiple sclerosis suggested some beneficial effect. In this randomized, double-blind, placebo-controlled, crossover phase II study we investigated their safety and efficacy in relapsing-remitting multiple sclerosis patients. Efficacy was evaluated in terms of cumulative number of gadolinium-enhancing lesions (GEL) on magnetic resonance imaging (MRI) at 6 months and at the end of the study. METHODS: Patients unresponsive to conventional therapy, defined by at least 1 relapse and/or GEL on MRI scan in past 12 months, disease duration 2 to 10 years and Expanded Disability Status Scale (EDSS) 3.0-6.5 were randomized to receive IV 1-2×10(6) bone-marrow-derived-MSCs/Kg or placebo. After 6 months, the treatment was reversed and patients were followed-up for another 6 months. Secondary endpoints were clinical outcomes (relapses and disability by EDSS and MS Functional Composite), and several brain MRI and optical coherence tomography measures. Immunological tests were explored to assess the immunomodulatory effects. RESULTS: At baseline 9 patients were randomized to receive MSCs (n = 5) or placebo (n = 4). One patient on placebo withdrew after having 3 relapses in the first 5 months. We did not identify any serious adverse events. At 6 months, patients treated with MSCs had a trend to lower mean cumulative number of GEL (3.1, 95% CI = 1.1-8.8 vs 12.3, 95% CI = 4.4-34.5, p = 0.064), and at the end of study to reduced mean GEL (-2.8±5.9 vs 3±5.4, p = 0.075). No significant treatment differences were detected in the secondary endpoints. We observed a non-significant decrease of the frequency of Th1 (CD4+ IFN-γ+) cells in blood of MSCs treated patients. CONCLUSION: Bone-marrow-MSCs are safe and may reduce inflammatory MRI parameters supporting their immunomodulatory properties. ClinicalTrials.gov NCT01228266

    Optimized classification of 18F-Florbetaben PET scans as positive and negative using an SUVR quantitative approach and comparison to visual assessment

    No full text
    Introduction: Standardized uptake value ratios (SUVRs) calculated from cerebral cortical areas can be used to categorize 18F-Florbetaben (FBB) PET scans by applying appropriate cutoffs. The objective of this work was first to generate FBB SUVR cutoffs using visual assessment (VA) as standard of truth (SoT) for a number of reference regions (RR) (cerebellar gray matter (GCER), whole cerebellum (WCER), pons (PONS), and subcortical white matter (SWM)). Secondly, to validate the FBB PET scan categorization performed by SUVR cutoffs against the categorization made by post-mortem histopathological confirmation of the Aβ presence. Finally, to evaluate the added value of SUVR cutoff categorization to VA. Methods: SUVR cutoffs were generated for each RR using FBB scans from 143 subjects who were visually assessed by 3 readers. SUVR cutoffs were validated in 78 end-of life subjects using VA from 8 independent blinded readers (3 expert readers and 5 non-expert readers) and histopathological confirmation of the presence of neuritic beta-amyloid plaques as SoT. Finally, the number of correctly or incorrectly classified scans according to pathology results using VA and SUVR cutoffs was compared. Results: Composite SUVR cutoffs generated were 1.43 (GCER), 0.96 (WCER), 0.78 (PONS) and 0.71 (SWM). Accuracy values were high and consistent across RR (range 83–94% for histopathology, and 85–94% for VA). SUVR cutoff performed similarly as VA but did not improve VA classification of FBB scans read either by expert readers or the majority read but provided higher accuracy than some non-expert readers. Conclusion: The accurate scan classification obtained in this study supports the use of VA as SoT to generate site-specific SUVR cutoffs. For an elderly end of life population, VA and SUVR cutoff categorization perform similarly in classifying FBB scans as Aβ-positive or Aβ-negative. These results emphasize the additional contribution that SUVR cutoff classification may have compared with VA performed by non-expert readers. Keywords: Florbetaben, PET, SUVR, Quantification, Visual assessmen

    Bilastine vs.

    No full text
    AIM: A close correlation exists between positron emission tomography (PET)-determined histamine H(1)-receptor occupancy (H(1)RO) and the incidence of sedation. Antihistamines with H(1)RO <20% are classified as non-sedating. The objective was to compare the H(1)RO of bilastine, a second generation antihistamine, with that of hydroxyzine. METHODS: This randomized, double-blind, crossover study used PET imaging with [(11)C]-doxepin to evaluate H(1)RO in 12 healthy males (mean age 26.2 years), after single oral administration of bilastine (20 mg), hydroxyzine (25 mg) or placebo. Binding potentials and H(1)ROs were calculated in five cerebral cortex regions of interest: frontal, occipital, parietal, temporal, insula. Plasma bilastine concentrations, subjective sedation (visual analogue scale), objective psychomotor performance (digital symbol substitution test), physiological variables and safety (adverse events, AEs), were also evaluated. RESULTS: The mean binding potential of all five regions of interest (total binding potential) was significantly greater with bilastine than hydroxyzine (mean value 0.26 vs. 0.13, P < 0.01; mean difference and 95% CI −0.130 [−0.155, 0.105]). There was no significant difference between bilastine and placebo. Overall H(1)RO by bilastine was significantly lower than that by hydroxyzine (mean value −3.92% vs. 53.95%, P < 0.01; mean difference and 95% CI 57.870% [42.664%, 73.075%]). There was no significant linear relationship between individual bilastine plasma concentrations and total binding potential values. No significant between-treatment differences were observed for sedation and psychomotor performance. Twenty-six non-serious AEs were reported. Sleepiness or sedation was not reported with bilastine but appeared in some subjects with hydroxyzine. CONCLUSIONS: A single oral dose of bilastine 20 mg had minimal H(1)RO, was not associated with subjective sedation or objective impairment of psychomotor performance and was devoid of treatment-related sedative AEs, thus satisfying relevant subjective, objective and PET criteria as a non-sedating antihistamine
    corecore