34 research outputs found

    Emerging Enemy of Veggies Unmasked

    Get PDF
    Chic, trendy veggies like arugula and baby broccoli, and familiar stand-bys like Brussels sprouts and cauliflower, are vulnerable to attack by a once-puzzling pathogen. Agricultural Research Service plant pathologist Carolee T. Bull and colleagues have, in laboratory, greenhouse, and field research, detected, identified, renamed, and classified the plant-killing microbe that’s now officially known as Pseudomonas cannabina pv. alisalensis. “Pv.” stands for “pathovar” and indicates that the microbe is a specific pathogenic form, or strain, of a species. Their work has sorted out some of the taxonomic confusion surrounding classification of the large, complex group of harmful bacteria in the genus Pseudomonas, to which P. cannabina pv. alisalensis properly belongs. In so doing, the team has helped growers, vegetable processors, fellow scientists, and anyone who enjoys eating good-for-you cruciferous veggies

    Development Of An Engineered Bioluminescent Reporter Phage For Detection Of Bacterial Blight Of Crucifers

    Get PDF
    Bacterial blight, caused by the phytopathogen Pseudomonas cannabina pv. alisalensis, is an emerging disease afflicting important members of the Brassicaceae family. The disease is often misdiagnosed as pepper spot, a much less severe disease caused by the related pathogen Pseudomonas syringae pv. maculicola. We have developed a phage-based diagnostic that can both identify and detect the causative agent of bacterial blight and differentiate the two pathogens. A recombinant >light>-tagged reporter phage was generated by integrating bacterial luxAB genes encoding luciferase into the genome of P. cannabina pv. alisalensis phage PBSPCA1. The PBSPCA1::luxAB reporter phage is viable and stable and retains properties similar to those of the wildtype phage. PBSPCA1::luxAB rapidly and sensitively detects P. cannabina pv. alisalensis by conferring a bioluminescent signal response to cultured cells. Detection is dependent on cell viability. Other bacterial pathogens of Brassica species such as P. syringae pv. maculicola, Pseudomonas marginalis, Pectobacterium carotovorum, Xanthomonas campestris pv. campestris, and X. campestris pv. raphani either do not produce a response or produce significantly attenuated signals with the reporter phage. Importantly, the reporter phage detects P. cannabina pv. alisalensis on diseased plant specimens, indicating its potential for disease diagnosis.National Science Foundation Small Business Innovative Research 1012059U.S. Department of EducationU.S. Department of AgricultureCellular and Molecular Biolog

    The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars.

    Get PDF
    Lettuce yields can be reduced by the disease bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) and host resistance is the most feasible method to reduce disease losses. The cultivars La Brillante, Pavane and Little Gem express an incompatible host-pathogen interaction as a hypersensitive response (HR) to California strains of Xcv resulting in resistance. Little was known about the inheritance of resistance; however, resistance to other lettuce pathogens is often determined by resistance gene candidates (RGCs) encoding nucleotide-binding leucine-rich repeat (NB-LRR) proteins. Therefore, we determined the inheritance of BLS resistance in the cultivars La Brillante, Little Gem and Pavane and mapped it relative to RGCs. The reaction to Xcv was analyzed in nine F1, F2 and recombinant inbred line populations of lettuce from HRĂ—compatible or HRĂ—HR crosses. The HR in La Brillante, Pavane and Little Gem is conditioned by single dominant genes, which are either allelic or closely linked genes. The resistance gene in La Brillante was designated Xanthomonas resistance 1 (Xar1) and mapped to lettuce linkage group 2. Xar1 is present in a genomic region that contains numerous NB-LRR encoding RGCs and functional pathogen resistance loci in the RGC2 family. The Xar1 gene confers a high level of BLS resistance in the greenhouse and field that can be introgressed into commercial lettuce cultivars to reduce BLS losses using molecular markers

    Judicial Opinions 123-127

    Get PDF
    Opinion 123 places the epithet of the name Aeromonas punctata on the list of rejected epithets and clarifies the citation of authors of selected names within the genus Aeromonas. Opinion 124 denies the request to place Borreliella on the list of rejected names because the request is based on a misinterpretation of the Code, which is clarified. There are alternative ways to solve the perceived problem. Opinion 125 denies the request to place Lactobacillus fornicalis on the list of rejected names because the provided information does not yield a reason for rejection. Opinion 126 denies the request to place Prolinoborus and Prolinoborus fasciculus on the list of rejected names because a relevant type strain deposit was not examined. Opinion 127 grants the request to assign the strain deposited as ATCC 4720 as the type strain of Agrobacterium tumefaciens, thereby cor-recting the Approved Lists. These Opinions were ratified by the voting members of the International Committee on Systematics of Prokaryotes

    Inference of Convergent Gene Acquisition Among Pseudomonas syringae Strains Isolated From Watermelon, Cantaloupe, and Squash

    Get PDF
    Pseudomonas syringae sensu strict , (phylogroup 2; referred to as P. syringae) consists of an environmentally ubiquitous bacterial population associated with diseases of numerous plant species. Recent studies using multilocus sequence analysis have indicated the clonal expansion of several P. syringae lineages, located in phylogroups 2a and 2b, in association with outbreaks of bacterial spot disease of watermelon, cantaloupe, and squash in the United States. To investigate the evolutionary processes that led to the emergence of these epidemic lineages, we sequenced the genomes of six P. syringae strains that were isolated from cucurbits grown in the United States, Europe, and China over a period of more than a decade, as well as eight strains that were isolated from watermelon and squash grown in six different Florida counties during the 2013 and 2014 seasons. These data were subjected to comparative analyses along with 42 previously sequenced genomes of P. syringae stains collected from diverse plant species and environments available from GenBank. Maximum likelihood reconstruction of the P. syringae core genome revealed the presence of a hybrid phylogenetic group, comprised of cucurbit strains collected in Florida, Italy, Serbia, and France, which emerged through genome-wide homologous recombination between phylogroups 2a and 2b. Functional analysis of the recombinant core genome showed that pathways involved in the ATP-dependent transport and metabolism of amino acids, bacterial motility, and secretion systems were enriched for recombination. A survey of described virulence factors indicated the convergent acquisition of several accessory type 3 secreted effectors (T3SEs) among phylogenetically distinct lineages through integrative and conjugative element and plasmid loci. Finally, pathogenicity assays on watermelon and squash showed qualitative differences in virulence between strains of the same clonal lineage, which correlated with T3SEs acquired through various mechanisms of horizontal gene transfer (HGT). This study provides novel insights into the interplay of homologous recombination and HGT toward pathogen emergence and highlights the dynamic nature of P. syringae sensu lato genomes

    Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots

    Get PDF
    Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal), which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs). While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity

    Transfer of Xanthomonas campestris pv. arecae, and Xanthomonas campestris pv. musacearum to Xanthomonas vasicola (Vauterin) as Xanthomonas vasicola pv. arecae comb. nov., and Xanthomonas vasicola pv. musacearum comb. nov. and description of Xanthomonas vasicola pv. vasculorum pv. nov.

    Get PDF
    The "Ca2+ switch" model with cultured Madin-Darby canine kidney (MDCK) cells is useful in studying the biogenesis of epithelial polarity and junction formation and provides insight into early steps in the morphogenesis of polarized epithelial tissues. When extracellular Ca2+ in the medium is changed from less than 5 microM to 1.8 mM, MDCK cells rapidly change from a nonpolarized state exhibiting little cell-cell contact (with the apical membrane and junctional proteins largely within the cell) to a polarized state with well-formed tight junctions and desmosomes. To examine the role of intracellular Ca2+ in the development of polarity and junctions, we made continuous spectrofluorimetric measurements of intracellular Ca2+ during the "switch," using the fluorescent indicator fura-2. Intracellular Ca2+ increased greater than 10-fold during the switch and gave a complex pattern of increase, decrease, and stabilization. In contrast, intracellular pH [monitored with 29,79-bis(2-carboxyethyl)-5(and 6)-carboxyfluorescein (BCECF)] did not change during the period studied. When intracellular Ca2+ curves in several cells were compared, considerable heterogeneity in the rate of increase of intracellular Ca2+ levels and in peak levels was evident, perhaps reflecting the heterogeneity among cells in establishing junctions and polarity. The heterogeneity of the process was confirmed by digital imaging of intracellular Ca2+ and was present even in a "clonal" line of MDCK cells, indicating the heterogeneity was intrinsic to the process and not simply a function of slight genetic variation within the population of MDCK cells. In pairs of cells that had barely established cell-cell contact, often one cell exhibited a much greater increase in intracellular Ca2+ than the other cell in the pair. At the site of cell-cell contact, an apparent localized change (an increase over the basal level) in intracellular Ca2+ was frequently present and occasionally appeared to extend beyond the point of cell-cell contact. Since the region of cell-cell contact is also the site where junctions form and where vesicles containing apical membranes fuse during the development of polarity, we postulate a role for global and local changes in intracellular Ca2+ in these events
    corecore