54 research outputs found

    Genome-annotated bacterial collection of the barley rhizosphere microbiota

    Get PDF
    A culture collection of 41 bacteria isolated from the rhizosphere of cultivated barley (Hordeum vulgare subsp. vulgare) is available at the Division of Plant Sciences, University of Dundee (UK). The data include information on genes putatively implicated in nitrogen fixation, HCN channels, phosphate solubilization, and linked whole-genome sequences

    Bottom-up perspective:The role of roots and rhizosphere in climate change adaptation and mitigation in agroecosystems

    Get PDF
    Climate change is happening and causing severe impact on the sustainability of agroecosystems. We argue that many of the abiotic stresses associated with climate change will be most acutely perceived by the plant at the root-soil interface and are likely to be mitigated at this globally important interface. In this review we will focus on the direct impacts of climate change, temperature, drought and pCO2, on roots and rhizospheres. We consider which belowground traits will be impacted and discuss the potential for monitoring and quantifying these traits for modelling and breeding programs. We discuss the specific impacts of combined stress and the role of the microbial communities populating the root-soil interface, collectively referred to as the rhizosphere microbiota, in interactions with roots under stress and discuss the plastic responses to stress as a way of adapting plants to climate change. We then go on to discuss the role that modelling has in understanding this complex problem and suggest the best belowground targets for adaptation and mitigation to climate change. We finish by considering where the main uncertainties lie, providing perspective on where research is needed. This review therefore focuses on the potential of roots and rhizosphere to adapt to the climate change effects and to mitigate their negative impacts on plant growth, crop productivity, soil health and ecosystem services

    Nitrogen Fertilizers Shape the Composition and Predicted Functions of the Microbiota of Field-Grown Tomato Plants

    Get PDF
    The microbial communities thriving at the root_soil interface have the potential to improve plant growth and sustainable crop production. Yet, how agricultural practices, such as the application of either mineral or organic nitrogen fertilizers, impact on the composition and functions of these communities remains to be fully elucidated. By deploying a two-pronged 16S rRNA gene sequencing and predictive metagenomics approach, we demonstrated that the bacterial microbiota of field-grown tomato (Solanum lycopersicum) plants is the product of a selective process that progressively differentiates between rhizosphere and root microhabitats. This process initiates as early as plants are in a nursery stage and it is then more marked at late developmental stages, in particular at harvest. This selection acts on both the bacterial relative abundances and phylogenetic assignments, with a bias for the enrichment of members of the phylum Actinobacteria in the root compartment. Digestate-based and mineral-based nitrogen fertilizers trigger a distinct bacterial enrichment in both rhizosphere and root microhabitats. This compositional diversification mirrors a predicted functional diversification of the root-inhabiting communities, manifested predominantly by the differential enrichment of genes associated to ABC transporters and the two-component system. Together, our data suggest that the microbiota thriving at the tomato root_soil interface is modulated by and in responses to the type of nitrogen fertilizer applied to the field

    Bacterial Communities in the Embryo of Maize Landraces:Relation with Susceptibility to Fusarium Ear Rot

    Get PDF
    Locally adapted maize accessions (landraces) represent an untapped resource of nutritional and resistance traits for breeding, including the shaping of distinct microbiota. Our study focused on five different maize landraces and a reference commercial hybrid, showing different susceptibility to fusarium ear rot, and whether this trait could be related to particular compositions of the bacterial microbiota in the embryo, using different approaches. Our cultivation-independent approach utilized the metabarcoding of a portion of the 16S rRNA gene to study bacterial populations in these samples. Multivariate statistical analyses indicated that the microbiota of the embryos of the accessions grouped in two different clusters: one comprising three landraces and the hybrid, one including the remaining two landraces, which showed a lower susceptibility to fusarium ear rot in field. The main discriminant between these clusters was the frequency of Firmicutes, higher in the second cluster, and this abundance was confirmed by quantification through digital PCR. The cultivation-dependent approach allowed the isolation of 70 bacterial strains, mostly Firmicutes. In vivo assays allowed the identification of five candidate biocontrol strains against fusarium ear rot. Our data revealed novel insights into the role of the maize embryo microbiota and set the stage for further studies aimed at integrating this knowledge into plant breeding programs

    Defining composition and function of the rhizosphere microbiota of barley genotypes exposed to growth-limiting nitrogen supplies

    Get PDF
    The microbiota populating the rhizosphere, the interface between roots and soil, can modulate plant growth, development, and health. These microbial communities are not stochastically assembled from the surrounding soil, but their composition and putative function are controlled, at least partially, by the host plant. Here, we use the staple cereal barley as a model to gain novel insights into the impact of differential applications of nitrogen, a rate-limiting step for global crop production, on the host genetic control of the rhizosphere microbiota. Using a high-throughput amplicon sequencing survey, we determined that nitrogen availability for plant uptake is a factor promoting the selective enrichment of individual taxa in the rhizosphere of wild and domesticated barley genotypes. Shotgun sequencing and metagenome-assembled genomes revealed that this taxonomic diversification is mirrored by a functional specialization, manifested by the differential enrichment of multiple Gene Ontology terms, of the microbiota of plants exposed to nitrogen conditions limiting barley growth. Finally, a plant soil feedback experiment revealed that host control of the barley microbiota underpins the assembly of a phylogenetically diverse group of bacteria putatively required to sustain plant performance under nitrogen-limiting supplies. Taken together, our observations indicate that under nitrogen conditions limiting plant growth, host-microbe and microbe-microbe interactions fine-tune the host genetic selection of the barley microbiota at both taxonomic and functional levels. The disruption of these recruitment cues negatively impacts plant growth

    The CC-NB-LRR-Type Rdg2a Resistance Gene Confers Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of Hypersensitive Cell Death

    Get PDF
    BACKGROUND: Leaf stripe disease on barley (Hordeum vulgare) is caused by the seed-transmitted hemi-biotrophic fungus Pyrenophora graminea. Race-specific resistance to leaf stripe is controlled by two known Rdg (Resistance to Drechslera graminea) genes: the H. spontaneum-derived Rdg1a and Rdg2a, identified in H. vulgare. The aim of the present work was to isolate the Rdg2a leaf stripe resistance gene, to characterize the Rdg2a locus organization and evolution and to elucidate the histological bases of Rdg2a-based leaf stripe resistance. PRINCIPLE FINDINGS: We describe here the positional cloning and functional characterization of the leaf stripe resistance gene Rdg2a. At the Rdg2a locus, three sequence-related coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NB-LRR) encoding genes were identified. Sequence comparisons suggested that paralogs of this resistance locus evolved through recent gene duplication, and were subjected to frequent sequence exchange. Transformation of the leaf stripe susceptible cv. Golden Promise with two Rdg2a-candidates under the control of their native 5′ regulatory sequences identified a member of the CC-NB-LRR gene family that conferred resistance against the Dg2 leaf stripe isolate, against which the Rdg2a-gene is effective. Histological analysis demonstrated that Rdg2a-mediated leaf stripe resistance involves autofluorescing cells and prevents pathogen colonization in the embryos without any detectable hypersensitive cell death response, supporting a cell wall reinforcement-based resistance mechanism. CONCLUSIONS: This work reports about the cloning of a resistance gene effective against a seed borne disease. We observed that Rdg2a was subjected to diversifying selection which is consistent with a model in which the R gene co-evolves with a pathogen effector(s) gene. We propose that inducible responses giving rise to physical and chemical barriers to infection in the cell walls and intercellular spaces of the barley embryo tissues represent mechanisms by which the CC-NB-LRR-encoding Rdg2a gene mediates resistance to leaf stripe in the absence of hypersensitive cell death.Davide Bulgarelli, Chiara Biselli, Nicholas C. Collins, Gabriella Consonni, Antonio M. Stanca, Paul Schulze-Lefert and Giampiero Val

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin
    • …
    corecore