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Abstract: Locally adapted maize accessions (landraces) represent an untapped resource of nutritional
and resistance traits for breeding, including the shaping of distinct microbiota. Our study focused on
five different maize landraces and a reference commercial hybrid, showing different susceptibility to
fusarium ear rot, and whether this trait could be related to particular compositions of the bacterial
microbiota in the embryo, using different approaches. Our cultivation-independent approach utilized
the metabarcoding of a portion of the 16S rRNA gene to study bacterial populations in these samples.
Multivariate statistical analyses indicated that the microbiota of the embryos of the accessions
grouped in two different clusters: one comprising three landraces and the hybrid, one including the
remaining two landraces, which showed a lower susceptibility to fusarium ear rot in field. The main
discriminant between these clusters was the frequency of Firmicutes, higher in the second cluster,
and this abundance was confirmed by quantification through digital PCR. The cultivation-dependent
approach allowed the isolation of 70 bacterial strains, mostly Firmicutes. In vivo assays allowed the
identification of five candidate biocontrol strains against fusarium ear rot. Our data revealed novel
insights into the role of the maize embryo microbiota and set the stage for further studies aimed at
integrating this knowledge into plant breeding programs.

Keywords: Fusarium verticillioides; 16S metabarcoding; digital PCR; RAPD; Firmicutes

1. Introduction

Maize (Zea mays L.) is one of the most widely grown crops worldwide. It is not only
a staple food for people in several countries, but also a very important crop for animal
feed and finds use as industrial material for production of fuels, among other technological
uses. In addition to all these practical applications, maize has also been used as a model
organism in scientific research, as it benefits from a high level of phenotypic and genetic
variability, and quick life cycle.

While these characteristics allowed for a great increase in yield in the past century [1],
the predicted demands for food in the next few decades [2] suggest that substantial changes
in breeding techniques and agronomic processes will be required to reach the needed level
of crop improvement and yield [3].

The history of maize as a crop is very long: its domestication is traced back to approx-
imately 8700 BC in central America and the Spanish brought it to Europe at the end of
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the 16th century, where favorable environmental and social conditions allowed it to be
employed with success [4]. In particular, the first written reports on the use of corn in Italy
date back to 1600, proving that maize had well adapted to the climatic zone of cultivation
and to the local tradition of the people living in the North-Eastern part of the peninsula.
The cultivation in Italy gave rise to several landraces which were later abandoned for the
more productive dent hybrids when mechanized farming practices became more common
in the second half of the twentieth century [4].

The hybrids, which were selected mostly for their massive yield traits in field, have
lost several useful features which were present in ancient maize varieties that gave the
landraces a particular biochemical composition, including relevant nutritional components
such as antioxidants and carotenoids [5], and pathogen resistance. It has been recently
reported that certain Italian maize germplasm can be advantageous in resisting mycotoxin
accumulation in its kernels [6,7]. This last trait is of particular importance not only for
the ability of the maize plants to produce an abundant quantity of kernels, but also for
their quality: several phytopathogenic fungal species belonging to the genera Aspergillus,
Fusarium, and Penicillium that frequently colonize maize plants in field are known to
produce mycotoxins as part of their secondary metabolism [8]. These fungi may not always
produce visible damage to kernels but may still contaminate them with mycotoxins. These
toxins, which are highly stable and extremely dangerous even at low concentrations, are
currently one of the main concerns for human and animal nutrition all over the world [9].
The use of endophytes with biocontrol abilities against these toxigenic fungi can be of great
interest for several reasons: biocontrol endophytes may prove effective against these fungi
that develop at least for a portion of their life cycle inside the tissues of the host, and some
endophytes are known to chelate and detoxify mycotoxins [10,11]; furthermore, the use
of synthetic fungicides has given inconsistent results on this particular issue, sometimes
resulting in a greater rate of mycotoxin production by the pathogens [12], making the use
of biological control agents a more sustainable and potentially effective option [13].

While the local varieties have disappeared from the fields, many efforts were made to
recover and preserve the genotypes of these traditional populations. These landraces are
now receiving much attention for their potential use in new breeding programs with the
aim of identifying novel alleles and haplotypes and using them in a context of low-input
and sustainable agriculture [14–17].

Despite this, alleles and haplotypes are only a part of what should be taken into
account while carrying out breeding programs: quantitative trait loci and, in general,
genome-wide association studies of complex physiological traits consistently found that
associated genetic factors, such as allelic polymorphisms or DNA mutations, only explained
a minority of the expected heritable fraction, highlighting the presence of other factors
contributing to the variability of these traits [18]. This discrepancy is known as “missing
heritability”, and the microbiome could be one contributor to this heritability that is not
explained by the genome sequence alone.

While it has been held for a long time that healthy plant tissues were sterile, the
presence of complex communities of microorganisms inside every plant tissue has been
proven [19,20]. These microorganisms, called endophytes, can have beneficial, neutral, or
harmful effects on the host. Since beneficial endophytes can influence the growth of the host
plant, as well as its metabolic processes and resistance to both biotic and abiotic stresses [21],
their presence can greatly affect the phenotype of their host. By increasing the uptake of
nutrients and granting higher resistance to pathogens and pests, as well as other stresses,
a positive relation between microorganisms, the plant, and the environment can greatly
contribute to integrity, proper functionality, and sustainability of agro-ecosystems [22].

Moreover, seed-borne endophytes have been shown to be an important source of
bacteria within other tissues. The identification of a set of endophytic microbes among
Zea spp. that are conserved across evolutionary and ecological boundaries [19] suggests
microbes with beneficial properties to the host plant are selected from the environment by
the plants themselves. In addition to environmental origin there is also evidence that, in
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some plant species, bacterial endophytes can be inherited from one generation to the next
through seed [23,24].

The aim of this study was to characterize, using both cultivation-dependent and
-independent approaches, the embryo-associated bacterial microbiota of six maize acces-
sions, including a hybrid and five landraces with distinct geographical origins, in order
to determine whether this microbiota and/or single bacteria that compose it can have an
effect in contrasting the infection from Fusarium verticillioides, a main agent of fusarium ear
rot in Northern Italy.

2. Materials and Methods
2.1. Plant Material

This study was carried out on seeds obtained from six maize accessions, all cultivated
at the experimental field of the University of Milan situated in the Angelo Menozzi farm
in Landriano (PV), Italy (45◦190 N, 9◦160 E, 88 m a.s.l). The six accessions, which include
a hybrid B73 × Mo17 and five landraces with different characteristics, are reported in
Table 1. All accessions were sowed in the first half of May in years 2017, 2018, and 2020,
and harvested in the last week of August. The seeds from years 2017 and 2018 were dried
and stored at room temperature for further analyses. The material from year 2020 was used
exclusively for the infection assay and the whole ears were analyzed right after harvest.

Table 1. List of maize accessions used in the study.

Accession Code Genetic
Constitution Origin FAO

Classification Pigmentation Reference

B73 ×Mo17 H Hybrid USA 700 Yellow [25]

Ottofile Basia A opv North Italy 300 Orange
(Phlobaphenes)

Unpublished
results of our group

Ottofile Tortonese G opv North Italy 300 Yellow [25]

Spinoso Nero della Val
Camonica N opv North Italy 400 Black

(Phlobaphenes) [16]

Mais Bianco Qwa-Qwa W opv South
Africa 800 White [26]

Millo Corvo C opv Spain 400 Black
(Anthocyanins) [15]

2.2. Description of Bacterial Embryo-Associated Community

The bacterial community associated to the embryo of the selected maize accessions
was described with both cultivation-dependent and cultivation-independent methods,
detailed as follows:

2.2.1. Sterilization of Seeds and Embryo Isolation

Isolation of cultivable bacteria was carried out from the embryo of maize seeds of
the six accessions collected in year 2017. Isolation starting from different matrixes (whole
seeds or endosperm) were considered and tried out on some of the samples but, ultimately,
extraction from embryos was deemed more effective (Table S1).

Seeds were surface sterilized by a wash in ethanol 70%, followed by a wash in bleach
2.5%, and another wash in ethanol 70%. Each wash had a duration of 3 min. After the wash
steps, the seeds were rinsed in sterile water for three times. An aliquot of the last washing
water was plated on lysogeny broth agar (LBA) plates and incubated at 24 ◦C to check for
growth and confirm the efficacy of the sterilization.

The sterilized seeds were kept in sterile water at 20 ◦C in the dark for 24 h to soften
them, and then the embryos were excided using sterile tweezers and scalpels.
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2.2.2. Isolation of Cultivable Bacteria

For each of the six accessions, three samples made of ten embryos each were ground
in a mortar containing 2 mL of sterile Ringer solution (Sigma-Aldrich, St. Louis, MO, USA),
obtaining approximately 1:10 dilution (w/v). The homogenized solution of ground maize
embryos was serially diluted twice, for a total of three different concentrations of 1:10,
1:100, and 1:1000.

From each of these solutions, a 100 µL aliquot was inoculated on three LBA and three
tryptic soy agar (TSA) plates and incubated at 24 ◦C for 14 days, checking for bacterial
growth every two days.

Bacterial colonies were isolated based on the phenotype of the colony: for each
accession and growth medium, only one colony with a specific morphology was isolated,
while colonies with the same phenotype but isolated from different maize accessions or on
different medium were isolated separately.

All isolated colonies were maintained on separate plates containing the same medium
as the original plate they were isolated from (LBA or TSA). Isolates obtained were given
an identifier that includes the code of the accession from which they were isolated and a
progressive number.

2.2.3. Molecular Characterization of Cultivable Bacteria

From each isolate, DNA was extracted following the protocol described by Wilson [27].
Briefly, this method starts from an overnight culture in liquid broth of the bacterial strain,
and extracts the nucleic acids by lysis with lysozyme, incubation with protease K and SDS,
and incubation with a CTAB buffer, separation with chloroform:isoamyl alcohol, washing
with ethanol, and lastly suspension of the nucleic acids in TE. The quality, quantity and
integrity of the DNA was assessed with a NanoDrop ND-1000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA) and by electrophoresis on 1% agarose gel.

A first step in characterizing the isolates was carried out through a RAPD-PCR ap-
proach, following the protocol described by Morandi and colleagues [28], utilizing a single
primer (M13: 5′-GAGGGTGGCGGTCT-3′) to obtain amplicons of different lengths, which
pattern can be used in taxonomic fingerprinting.

The amplicons were visualized through electrophoresis in a 1.5% agarose gel in
TAE, using SYBR Safe (Invitrogen, Waltham, MA, USA) dye. The obtained amplification
profiles for each isolate were grouped together through an UPGMA algorithm using the
BioNumeric 5.0 package (Applied Maths, Sint-Martens-Latem, Belgium). Different isolates
that showed more than 90% identity in the RAPD-PCR profile, came from the same maize
accession and showed identical morphology were considered to be the same isolate for
subsequent characterization steps, and only one representative isolate was utilized from
each group.

From each of these representative isolates, an approximately 1400 bp portion of
the 16S rDNA gene was amplified by PCR using the 27F/1492R primer pair (27F: 5′-
AGAGTTTGATCMTGGCTCAG-3′; 1492R: 5′-ACCTTGTTACGACTT-3′ [29]). The PCR mix
contained 1× GoTaq Flexi buffer (Promega, Madison, WI, USA), 1.5 mM MgCl2, 0.5 µM
of each primer, 200 µM dNTPs. 2.5 U of Taq DNA polymerase, 2 µL of template DNA,
and water up to 50 µL. Amplification was carried out with an initial denaturation at
94 ◦C for 5 min, 35 cycles of denaturation at 94 ◦C for 1 min, annealing at 53 ◦C for 1
min, and extension at 72 ◦C for 1.5 min, followed by a final extension step at 72 ◦C for 7
min. The amplicons were visualized through electrophoresis in a 1% agarose gel in TBE,
using Midori Green (Nippon Genetics, Düren, Germany) dye. The obtained amplicons
were sequenced in both senses (5× coverage per base position) by a commercial service
(Eurofins Genomics, Ebersberg, Germany). Nucleotide sequences were compiled in FASTA
format, assembled by employing the Contig Assembling Program of the software BioEdit
version 7.2 [30]. Assembled sequences are available on NCBI under accession numbers
from OK584315 to OK584384. Attribution of each isolate to species or genus was carried
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out by comparing the 16S sequence obtained with those present in NCBI database using
the MegaBLAST algorithm.

2.2.4. Cultivation-Independent Description of Bacterial Community

For each maize accession, three samples containing ten embryos each were prepared
starting from seeds obtained in year 2017 and in year 2018. From these samples, DNA
was extracted following a CTAB-based protocol described by Angelini and colleagues [31].
Briefly, this protocol allows the extraction of DNA from plant material by grinding the
plant tissue in a CTAB buffer, followed by incubation at high temperature, separation with
chloroform:isoamyl alcohol, precipitation with isopropanol, washing with ethanol, and
resuspension of the nucleic acids in TE.

The quality, quantity and integrity of the DNA was assessed with a Nanodrop1000
spectrophotometer and by electrophoresis on 1% agarose gel.

On these samples, the hypervariable V4 region of the 16S rRNA gene was amplified
using the primer pair 515F/806R (515F: 5′-GTGCCAGCMGCCGCGGTAA-3′; 806R: 5′-
GGACTACHVGGGTWTCTAAT-3′). These primers contained an Illumina flow cell adapter
at their 5′ end and the reverse primer also included a 12 bp unique barcode sequence to
allow simultaneous sequencing of multiple samples. In this reaction, blocking primers
with a specific sequence for chloroplasts/mitochondria were added to reduce the quantity
of plant derived sequences obtained as detailed by Moronta-Barrios and colleagues [32].

After PCR, the obtained amplicons were pooled and submitted for an Illumina MiSeq
sequencing, 2 × 150 bp chemistry, to the Genome Technology group at the James Hutton
Institute (Invergowrie, UK). Quality control, processing, and sequencing were carried out
as previously described [33–35].

Sequencing reads were analyzed through a custom bioinformatics pipeline. The first
step was carried out in the QIIME software, version 1.9.0, to process the FASTQ file, using
default parameters for each step [36]. Using the join_paired_ends.py command, forward
and reverse files for each library were decompressed and merged, using a threshold of
30 bp overlap between reads. After this process, reads were demultiplexed according to
their initial barcode sequences. Using the split_libraries_fastq.py command, the reads were
filtered for quality, using a threshold on the PHRED score ‘-q’ of 20. These high-quality reads
were trimmed at a uniform length of 250 nucleotide through the ‘fastq_filter’ function of
USEARCH [37]. These truncated sequences were then used for clustering in Operational Tax-
onomical Units (OTUs), using the threshold value of 97% identity value. After clustering, the
identity of the OTUs was determined with a closed reference OTU-picking approach against
the Silva database (version 132) [38] using the SortMeRNA algorithm [39]. The output of
this procedure was an OTU table reporting the abundance of each OTU for each sample,
as well as a phylogenetic tree. Singletons, defined as OTUs found only once in the whole
dataset, and plant derived sequences, those attributed to chloroplasts and mitochondria,
were removed from the dataset with the filter_otus_from_otu_table.py command.

The OTU table and phylogenetic tree were used as input files in R [40] to be analyzed
with the following packages: Phyloseq [41] for processing and calculating metrics of
Alpha- and Beta-diversity; Vegan [42] for statistical analysis of Beta-diversity; Ape [43] for
phylogenetic tree analysis; ggplot2 [44] for data visualizations.

Alpha-diversity was calculated using the estimate richness function in Phyloseq, and
expressed through the Observed, Chao-1, and Shannon indexes.

Beta-diversity was analyzed on a normalized table, in which the uneven number
of reads per sample was normalized converting the individual OTU count to an abun-
dance percentage, using the Weighted Unifrac metric, which is sensitive both to relative
abundance and phylogenetic classification, and the Unweighted Unifrac metric, which
is sensitive to unique taxa [45]. The dissimilarity matrix obtained from this process was
visualized using the ordinate function in the Phyloseq package and its significance was
assessed through a permutational ANOVA (5000 permutations). The effect size and statisti-
cal significance of variables in the Beta-diversity dissimilarity matrix was inspected by a
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permutational multivariate analysis of variance (PermANOVA) using the Adonis function
in the Vegan package (10,000 permutations).

The sequencing reads utilized in this analysis are available at ENA PRJEB47936, while
the files and script–OTU table, mapping files, R script–are available on GitHub (https://
github.com/AlessandroPasser/Maize_Embryo_Microbiota (accessed on 16 November 2021)).

2.2.5. Validation of Sequencing Data

The results obtained from the sequencing of 16S were validated through digital
PCR. In particular, total quantity of bacteria and Firmicutes in each DNA sample ex-
tracted from maize embryos in 2018 was evaluated using the primer pairs 906F/1062R
(906F: 5′- AAACTCAAAKGAATTGACGG-3′; 1062R: 5′-CTCACRRCACGAGCTGAC-3′)
and 928F-Firm/1040R-Firm (928F-Firm: 5′-TACGGCCGCAAGGCTA-3′; 1040R-Firm: 5′-
TCRTCCCCACCTTCCTCCG-3′) [46], respectively. The amplification was carried out using
an the EVAGREEN MIX (Qiagen, Hilden, Germany), following the manufacturer’s instruc-
tions, using a final primer concentration of 300 nm and loading 2 µL of each DNA sample
at 5 different concentrations, ranging from 1:10 dilution to 1:104. Controls included in the
reaction include two bacterial DNAs extracted from pure culture: DNA from a Bacillus
pumilus strain to act as positive control in both reactions, and DNA from a Pseudomonas
syringae strain to act as positive control with the universal bacterial primers and as negative
control in the Firmicutes-specific primers. No-Template Controls were included, adding
sterile water instead of DNA to the mix. All reactions were carried out on a QIAcuity
machine, using 96-wells plates with 8500 partitions per well, and data were analyzed with
QIAcuity Suite v 1.3.

For each sample, the count of copies/µL was converted to copies/ng of DNA in the
original sample to normalize the data. The copy number of total bacteria and Firmicutes
was expressed as an average of all analyzed samples for each maize accession and the ratio
between the two was compared between the data obtained from dPCR and from Illumina
sequencing.

2.3. In Vitro Characterization of the Antifungal Properties of the Isolated Bacteria

The bacteria isolated from the maize accessions were evaluated through different
in vitro assays to determine whether they had some antifungal activity towards a plant
pathogenic fungus widely involved in fusarium rot in northern Italy, Fusarium verticillioides.

2.3.1. In Vitro Antifungal Assays

The ability of the bacterial strains to reduce the growth of F. verticillioides strain GV2245
(identified as FV from now on), isolated from maize ear in 2011, was assessed in a two-steps
experiment utilizing dual-culture technique.

In the first step, a qualitative assay was set up, streaking a single colony of the bacterial
isolate on one side of the plate, containing tryptone glucose yeast extract agar medium
(TGYA; containing 5 g/L tryptone, 1 g/L glucose, 3 g/L yeast extract, 15 g/L agar). After
two days of incubation at 24 ◦C, FV was inoculated as a mycelium/agar plug (0.6 cm in
diameter) on the diametrically opposite side of the plate, and it was incubated at 24 ◦C for
seven days. Each plate was produced in triplicates, and control plates in which FV alone
was growing were prepared as well. In each plate the inhibition of the growth of FV was
deemed successful if an inhibition halo was visible in the plate, and unsuccessful if no halo
was seen (Figure S1). At the end of this period, the interaction between bacterial strain
and fungus was classified as follows: a number from 0 to 3 was assigned to each bacterial
isolate, based on the number of replicates in which the bacteria managed to halt the growth
of FV. Bacteria that displayed an antifungal activity in most of the replicates (class 2 and 3)
were considered for the second step of the experiment.

The second step, a quantitative assay, was carried out as described by Passera and
colleagues [47]. Briefly, 20 µL droplets from overnight liquid culture of each strain were
placed on four cellulose disks near the border of a Petri dish containing TGYA and, after
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two days of incubation, a FV plug was placed in the middle of the plate. As negative
control, plates containing FV alone were used.

Fungal growth was measured 3- and 7-days post inoculation (dpi) as mycelial growth
diameter. Each test was carried out with plates in triplicate and three independent measures
were made for each plate at each measuring time. Growth inhibition percentage (GIP) was
calculated as [1− (D1/D2)]× 100, where D1 is the radial colony growth on bacteria-treated
plate, D2 is the radial colony growth in the control plate. Examples of plates with different
growth patterns of FV in this assay are provided in Figure S1.

2.3.2. In Vivo Biocontrol Assay

The most promising bacterial isolates that do not belong to potentially harmful species
(i.e., species that are reported in literature as human pathogens and/or food contaminants)
were chosen to carry out biocontrol assays against F. verticillioides on maize kernels.

Maize kernels from the hybrid accession were sterilized as previously described in
Section 2.2.1 and stored overnight at 4 ◦C in dry, sterile tubes.

The next day, they were inoculated with a bacterial suspension of one of the selected
isolates (20 mL of approximately 105 CFU/mL) and incubated with agitation (150 rpm) at
room temperature for three hours. After this time, a conidia suspension obtained from a
mix of seven F. verticillioides strains (identified as FVm from now on) was added to the tube
(final concentration of 104 conidia/mL) and incubated with agitation at room temperature
for three hours. This mixture of strains was used to avoid specific incompatibility between
a single F. verticillioides strain and the utilized maize accession, and comprises the following
F. verticillioides strains: Fv2003, Fv2010, Fv2170, Fv2198, Fv2221, Fv2232, and GV2245 of
the collection of the University of Milan Department of Agricultural and Environmental
Sciences (DiSAA, Milan, Italy). After the incubation, the maize kernels were placed in a
Petri dish containing 1% agar-water medium. Ten kernels were placed in each plate, and
five replicates were made for each treatment. In addition to the treatments, the following
controls were made: (i) kernels inoculated only with water, in place of both bacteria and
FVm, identified as C-; (ii) kernels inoculated with water in place of bacteria, but inoculated
with FVm, identified as C+; (iii) kernels treated with beneficial bacterial strains not isolated
from maize and previously reported to have no in vitro antifungal effect towards FV:
identified as Paenibacillus pasadenensis strain R16 [47], Pseudomonas syringae strain 260-
02 [48], and Lysinibacillus fusiformis strain S4C11 [49]. These last controls were used to
determine whether the biocontrol ability displayed in this assay could be determined by
specific antifungal abilities of the strains or could just be due to an aspecific interaction
caused by the presence of a high concentration of bacterial cells in the suspension.

The plates were stored at 24 ◦C for one week and were then observed to determine
the severity of the symptom caused by FVm on the germinated kernels. Each maize
seedling was attributed to a class based on the observed symptom, as follows: 0—no visible
symptom and no macroscopic mycelium observed on the surface; 1—no visible symptom,
but presence of some macroscopic mycelium structures on the seedling surface; 2—parts of
the seedling, either root or shoot but not both, are showing damage caused by FVm and a
big part of the seedling is covered in mycelium; 3—the seedling is completely covered in
mycelium and died, or the seed did not germinate and shows abundant mycelium on the
surface. Visual examples of each symptom class are provided in Figure S1.

The data obtained in this way was converted to an infection degree percentage (ID%)
for each plate, using the formula presented by Townsend and Heuberger [50].

2.4. In Field Susceptibility Assay of Selected Maize Accessions

In the end of July 2020, approximately seven days after the flowering of maize,
when the silks were still green but started to dry from the tips, maize plants were either
experimentally inoculated with FVm or mock inoculated with sterile water. The inoculation
was performed by injecting 1 mL of FVm or sterile water in the silk channel of the primary
ear of each plant. For each accession, five plants were inoculated and five plants were
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mock inoculated [9]. After harvesting the ears of maize, they were visually observed to
determine the damage caused by fusarium rot on each ear. The damage was expressed as
percentage of ear affected by the pathogen.

2.5. Statistical Analyses

Severity of FV-induced symptoms obtained during in vivo biocontrol assays (2.3.2)
and in field susceptibility assays (2.4) were compared between treatments by one-way
ANOVA followed by Tukey’s post-hoc test (p < 0.05) carried out in SPSS statistics v27 (IBM,
Armonk, NY, USA).

3. Results
3.1. Gram-Positive Bacteria Dominate the Culturable Fraction of the Maize Embryo Bacterial Microbiota

The isolation and cultivation of bacterial colonies from the embryo of different maize
accessions allowed us to identify 18 to 82 colonies from each accession, for a total of 303 dis-
tinct isolates (Table 2). After cultivation in axenic conditions and a further morphological
assessment we reduced the number of unique bacterial isolates to 82. Next, we used RAPD-
PCR profiles (Figure S2) to identify isolates sharing genomic content and this analysis
further reduced the number of isolates to 70 (Table 2). The sequencing and characterization
of the 16S rRNA gene of these unique isolates revealed that the collection is represented by
24 species assigned to 11 genera (Table S2). Of note, the great majority of these bacteria
(66 out of 70) was assigned to gram-positive genera: Bacillus (29 isolates), Brevibacillus
(1), Brevibacterium (1), Kocuria (1), Lysinibacillus (5), Microbacterium (1), Micrococcus (18),
Rothia (1), and Staphylococcus (9). The remaining four isolates belong to the Alpha- and
Gammaproteobacteria classes, represented by genera Brevundimonas (1) and Pseudomonas
(3), respectively.

Among these isolates, some were characterized as potential food contaminants be-
longing to Bacillus cereus group (1) and to Micrococcus luteus species (12), and therefore not
retained for further characterization.

Table 2. Table reporting the number of bacterial isolates obtained from each studied maize accession. The table reports the
initial number of isolates, the number after each screening step, and the number of different bacterial genera among them.

Accession Code Isolated Colonies After Morphology Screening After RAPD N◦ of Genera

H 50 31 30 7

A 28 6 5 5

G 82 3 2 2

N 18 17 13 4

W 62 21 16 2

C 63 4 4 2

3.2. The Host Genotype as a Driver of the Maize Embryo Bacterial Microbiota

To gain further insights into the determinants of the maize embryo bacterial mi-
crobiota, we performed a 16S rRNA gene amplicon sequencing survey of the six maize
accessions sampled in two different years. The sequencing was done three times, once
without using any sort of blocking techniques for organellar DNA, once using PNAs to
interrupt elongation of sequences belonging to organelles as described by Lundberg and
colleagues [51], and the final approach using blocking primers that selectively hinder the
production of sequences belonging to organelles by competitive binding, as described
in Materials and Methods (Section 2.2.4) [32]. The final approach used for the analysis
yielded, after filtering in silico sequencing reads of low quality and mapping plant-derived
sequences (i.e., mitochondria and chloroplasts), a total of 6007 reads assigned to bacteria,
much higher than the 2540 obtained employing the PNA blocking approach, and com-
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parable to the 6077 obtained using no blocking techniques. The initial number of reads
obtained was 2,617,250. After having identified sequencing reads assigned to chloroplast,
mitochondria and putative contaminants previously identified in the lab [35], more than
99% had of these reads had to be discarded, yielding an average of 500 reads per accession
per year (min 53 reads, max 1163 reads) (Table 3). These reads were assigned to a number
of OTUs per accession that ranges from 23 to 166 (Table 3).

Table 3. Table reporting the average value of total bacterial reads and assigned OTUs after NGS
analysis of each accession in both years.

Accession Code Year Reads OTUs

H
2017 548 46
2018 560 51

A
2017 312 55
2018 674 114

G
2017 162 53
2018 694 166

N
2017 836 71
2018 371 84

W
2017 1163 116
2018 112 31

C
2017 53 23
2018 522 115

The number of shared OTUs between samples of the same accession in different
years, that might constitute a core microbiota for that accession, is represented by UpSet
graphs (Figure 1). As these graphs show, only a small number of OTUs were conserved
between the different years investigated: these core bacteria could be as low as 8% of the
total number of OTUs (for accession C), to as high as 28% (for accession H). Considering
instead all the accessions in any given year, three and eight OTUs were common among all
accessions in 2017 (Figure 1G) and 2018 (Figure 1H), respectively.

Analysis of Alpha diversity highlighted very close values for the number of observed
OTUs and Chao-1 index (Figure 2A), suggesting that despite the low number of total
reads assigned to bacteria, the depth of sequencing might be adequate. There were no
statistically significant differences between sampling years or accessions on the values
of Observed OTUs (p-value = 0.166), Chao-1 index (p-value = 0.182), or Shannon’s index
(p-value = 0.547), according to a One-Way ANOVA test.

Next, we investigated whether phylogenetic footprint could be identified within the
maize embryo bacterial microbiota in the two examined years. To accomplish this task, we
computed a Weighted Unifrac distance, which takes into account both the OTUs abundance
and taxonomic affiliation. This analysis revealed that microbiota composition in maize
embryos can be partitioned in two main groups of variety separated along the axis account-
ing for ~23% of variation of principal component analysis (Figure 2B). Interestingly, these
groups emerged as sufficiently robust to withstand the year-to-year variation observed for
the number of reads and OTUs detected. The only exception to this is accession W, which
shows a variable attribution to these groups in different years, clustering with accession N
in 2017 and with the other four accessions in 2018. Congruently, a permutational analysis of
variance indicated the maize accession as a significant determinant of the maize microbiota
(Adonis, R2 = 0.315, p value = 0.000, 10,000 permutations) while neither the year (Adonis,
R2 = 0.034, p value = 0.359, 10,000 permutations) nor the interaction between year and
accession (Adonis, R2 = 0.167, p value = 0.388, 10,000 permutations) emerged as significant
factors driving microbiota composition. Strikingly similar results were obtained when we
computed unweighted Unifrac distances, which are sensitive to unique taxa, regarding
the relevance of genotype (Adonis, R2 = 0.238, p value = 0.003, 10,000 permutations). This
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indicates that compositional changes identified in our survey are sufficiently robust to
withstand biases introduced by the sequencing protocol.

Figure 1. UpSet graphs reporting the unique and shared OTUs within each accession in the two years 2017 and 2018.
Each graph reports the result of a different accession: (A) accession H; (B) accession A; (C) accession G; (D) accession N;
(E) accession W; (F) accession C. Graphs reporting the comparison of shared and unique OTUs identified between different
accessions in (G) year 2017 and (H) year 2018.

All accessions, with the exception of N in 2017, had a prevalence of Proteobacteria
in their microbiota, constituting even more than 50% of all the bacterial reads (Figure 3A).
All other phyla have great differences in abundance between the different accessions.
In particular, the main differences between N (both years), W (2017) accessions and the
other 4 (both years) are: higher abundance of Firmicutes, low abundance of Bacteroidetes,
Chloroflexi, Planctomycetes, and Verrucomicrobia.

At family level, the situation reflects the one detected at Phylum level. The presence
of Proteobacteria is, for all accessions except W in 2017, due mostly to bacteria belonging
to the Burkholderiaceae family, and to a minor extent from Pseudomonadaceae and Xan-
thomonadaceae (Figure 3B). For the accession W in 2017 the majority of Proteobacteria
reads belong to the Enterobacteriaceae family instead. Regarding the Firmicutes, which
are the phylum with higher relative abundance in accessions N (both years) and W (2017)
compared to the others, the great majority of the reads belong to the Bacillaceae family.

Considering the relatively low number of obtained reads, a complementary approach
was employed to ascertain the quantitative nature of our results. As the abundance
of Firmicutes emerged as a distinctive feature of the maize embryo microbiota across
accessions, we employed a quantitative digital PCR to assess the abundance of members of
this phylum as a proportion of 16S rRNA gene copy number. This investigation revealed
a correlation of R2 = 0.944 (Figure 4, p-value = 0.000) between the two quantification
approaches, suggesting that, despite the limited number of amplicon sequencing reads,
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the Firmicutes-led microbiota diversification represents a genuine trait of the communities
inhabiting maize embryos.

Figure 2. Graphs reporting the (A) Alpha and (B) Beta diversity of the bacterial communities
described by NGS sequencing. (A) Box plots reporting the Observed OTUs, Chao-1, and Shannon
indexes for each examined accession. (B) PCA plot reporting the results of Beta Diversity, calculated
with Unifrac algorithm. Shape of the markers indicate year of sampling, while the color indicates the
different accessions.
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Figure 3. Graphs reporting the microbiota composition as relative abundance (%) at (A) phylum level
and (B) family level. Both graphs show the accession on the X-axis and the percentage of relative
abundance on the Y-axis. The Y-axis is also divided in two grids, one for year 2017 and one for year
2018. Bars reaching a total below 100% in (B) are due to OTUs assigned to families other than the
most abundant 15 not being plotted on the graph.
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methods: the Y-axis reports the results of quantification with digital PCR, reporting the percentage of
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total bacterial reads obtained by NGS sequencing. The graph also reports the trendline and R2 value.

3.3. Gram-Positive Bacteria Isolated from Maize Show Strong Antifungal Ability against F. verticillioides

The bacterial strains isolated from maize embryos were screened for their ability to
inhibit the growth of F. verticillioides in vitro and on maize kernels. The in vitro assay
followed two steps of screening, a first, qualitative one that identified 29 strains that
were able to develop an inhibition halo and stop the mycelial growth of F. verticillioides
(Table S2). These strains were isolated from the different accessions as follows: no strains
from accession A, two from accession C, one from accession G, 17 from accession H, five
from accession N, and four from accession W. These 29 strains were used in a subsequent
assay that quantified the amount of inhibition the bacteria could exert. Of these strains, 16
showed a growth inhibition percentage (GIP) above 20% at 7 dpi, which was considered
as a threshold to be considered for further trials (Figure 5A). From these strains, six were
selected for the in vivo assay with maize kernels: the strains were selected by considering
the taxonomic attribution (ignoring strains that belong to species known as possibly
pathogenic), the GIP produced, and their ability to grow rapidly and consistently in
laboratory. From these characteristics, the six chosen strains were G01 (Pseudomonas
azotoformans), H03 (Micrococcus yunnanensis), H07 (Kocuria rosea), H20 (Bacillus megaterium),
N02 (Bacillus paralicheniformis), and N09 (Bacillus paralicheniformis). Three of these bacteria
belong to the Firmicutes phylum, and two were isolated from the accession N which
showed a different microbiota structure compared to the other accessions. The results
of the inoculation of the conidia F. verticillioides strains and bacterial solutions on maize
kernels are reported in Figure 5B. The positive control, inoculated only with FVm and
no bacterial strain, displayed high values of ID% (up to 68%) while the negative control,
mock-inoculated with water, gave lower ID% values, usually below 20%. The negative
control does not yield 0% ID% as the maize kernels utilized show presence of endogenous
microorganisms causing rot, apparently different Fusarium strains based on the symptoms
caused and the appearance of the mycelium, that can lead to infection even in the absence
of external inoculum. All the treatments with the different selected strains isolated from
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maize, except for strain H03, were associated with a significant reduction of ID% that
reached values comparable to those of the negative control (Figure 5B, one-way ANOVA,
Tukey’s post-hoc, p-value = 0.000). This result suggests that the application of the bacterial
strains on the surface of the maize kernels managed to negate the effect of the exogenous
FVm application but did not eliminate the ability of the naturally present, endogenous
microorganisms to rot the seeds. On the other hand, the bacterial strains not isolated from
maize and that did not show antifungal activity against F. verticillioides strains in previous
studies had no effect on the ID%, which remained on values comparable to those obtained
in the positive control.

Figure 5. Graphs reporting the results of the in vitro (on agar in Petri dishes) antifungal assay and
in vivo (on germinating kernels in Petri dishes) biocontrol assay against FV and FVm, respectively.
(A) Graph reporting on the X-axis the different bacterial isolates and on the Y-axis the growth
inhibition percentage obtained at 7 dpi. (B) Graph reporting on the X-axis the different treatments
carried out on maize and on the Y-axis severity of FV-induced symptoms, expressed as infection
percentage index (ID%). Vertical dashed lines separate between groups of samples: negative (C−)
and positive (C+) controls, bacteria isolated from maize in this study (H03, H07, H20, G01, N09,
N02), and bacteria isolated from other hosts in previous studies (260-02, S4C11, R16). Different letters
(a, b, c) indicate statistically significant differences among results, according to a one-way ANOVA
analysis followed by Tukey’s post-hoc test (p = 0.000).
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3.4. Accessions Characterized by Similar Embryo Microbiota Show Similar Susceptibility to
Fusarium Ear Rot

The susceptibility to the disease associated with F. verticillioides, fusarium ear rot, was
assayed in field, using both non-inoculated maize ears (natural infection) and performing
an experimental inoculum of the silk channels with a suspension of conidia from F. verticil-
lioides strains. The severity of the disease was assessed visually, as percentage of the ear
that was infected with Fusarium (Figure 6). All the maize accessions gave similar infection
rates under natural infection: while accession N and W had lower infection than the other 4,
even though this difference was not statistically significant (Figure 6A). Conversely, in the
F. verticillioides inoculated ears, statistically significant differences were reported: accessions
N and W had infection values similar to the naturally infected ears, while the remaining
four accessions had way higher infection values. This can also be seen by the pictures of
representative ears of maize of the different accessions (Figure 6B–G). This suggests that
these two accessions may have an adaptive advantage under conditions conducive to the
establishment of Fusarium infections.
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Figure 6. Results of the in field inoculation with FVm on maize ears. (A) graph reporting on the X-axis
the different accessions, either mock-inoculated with water or inoculated with FVm, and on the Y-axis
the infection severity, expressed as a percentage of the ear surface showing symptoms. Different letters
(a, b) indicate statistically significant differences among results, according to a one-way ANOVA
analysis followed by Tukey’s post-hoc test (p = 0.012). Panel showing representative maize ears either
mock inoculated (top of each picture) or FVm-inoculated (bottom of each picture) for (B) accession H,
(C) accession G, (D) accession A, (E) accession C, (F) accession N, and (G) accession W.
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4. Discussion

Finding new and effective solutions to the problem of mycotoxins in maize has been
a primary challenge for sustainable agriculture since decades [8], as their presence in
the kernels affects not only the direct consumption of corn as food but also animal feed,
with effects on the meat and dairy production lines. For this reason, development of
fungi-resistant maize genotypes could be a revolutionary advance in agriculture. Sadly,
the genetic bases behind resistance to Fusarium spp. is not well-characterized, making
breeding programs aimed in this direction very hard. Recent evidence suggests that
other phenotypes which are not easily explained by simple genetic traits, such as the
phenomenon of heterosis, might be related to a contribution of the microbiota [52]. A great
involvement of the microbiota is expected in processes based in plant-microbe interactions
such as defense mechanisms to pathogens, in which the recruitment of symbionts that can
protect against pathogens is already reported [53]. This involvement is even more relevant
while the plants are at the seed stage, during which they are exposed to several biotic
stresses and are at their most vulnerable [54].

The situation regarding infection by F. verticillioides is further complicated by the
different mechanisms by which it can infect maize. Infection can occur both by interaction
with the silk channels [55], the mechanism that was investigated in the present study,
and by entering through holes and wounds present on the surface of the plant, such as
those caused by insects, in particular Ostrinia nubilalis. Also, F. verticillioides can survive
as an endophyte [10], causing no symptoms to the host plant, for long periods of time
and therefore give rise to latent infections that only show symptoms at later times. It
is also known that different fungal pathogens, such as different species of Fusarium or
Fusarium with Ustilago species, can interact between themselves to promote or hinder the
development of disease [55].

With these considerations in mind, both regarding the complexity of the pathosystem
and the involvement of microorganisms in the infection process, the hypothesis behind the
current study was that resistance to the pathogens responsible for fusarium ear rot may
see contributions from the microbiota present in the kernels, not being directly/strictly
associated to genes of the maize plant alone. The presence of encouraging studies in the
literature showing the value of exploring the microbiota of less standardized genotypes
to look for bacteria that can protect maize from pathogens [56] further reinforced the
hypothesis that this approach could yield interesting results.

The characterization of the embryo-associated bacterial microbiota gave different
results depending on the technique employed: cultivation-dependent and -independent
approaches did not agree on the composition of the bacterial community.

The major point on which both approaches converge is that they identified a low
number of bacteria from the investigated tissue. This is not surprising as the embryo is a
tissue that was considered to be completely sterile for a long time even after the discovery
of endophytic communities in other organs of plants and, being subject to very strict
regulation and protection by several physical and biochemical barriers, it is very hard to
colonize for microbes [57].

While the sequencing-based approach described a bacterial community dominated by
Proteobacteria, the cultivation-dependent characterization led to the isolation of mostly
Gram-positive bacteria, in particular belonging to the genera Bacillus and Micrococcus,
which is in line with results previously obtained on maize seeds [23]. This could be due to
the stress induced by the drying of the seed, a kind of stress that endospore-forming Gram-
positive bacteria can endure more easily than other bacteria. With the current data, it is not
possible to conclude whether the majority of the bacteria identified through sequencing, in
particular the high number of Burkholderiaceae, are not viable and identified only from
their remaining DNA, or if they are in a viable but not cultivable state.

The cultivation-independent approach gave a very low number of reads belonging to
bacteria. The sequencing was done three times, and gave poor results when using PNA
blockers, and comparable results when using no blocking technique or blocking primers.
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Our personal experience thus suggests that, when working with maize embryos, the use
of PNAs may not be recommended, and the use of blocking primers does not lead to
substantially better results compared to the amplification carried out in conventional PCR.

One experimental trial and two comparisons with previously performed studies can
help explain and confirm the validity these results: (i) although the number of reads is
below what considered a standard for amplicon sequencing surveys, the results were
validated using an independent, quantitative assay: quantification of either total eubacteria
or Firmicutes in the samples by digital-PCR. The obtained results validated both the low
number of bacteria in the samples and the percentage of Firmicutes compared to the
total of eubacteria for most analyzed samples. (ii) The overall structure of the microbiota
of the embryos, with a great abundance of Proteobacteria, followed by Actinobacteria,
Bacteroidetes, and Firmicutes is in accordance with the results obtained by Guimaraes and
colleagues [58] when analyzing the microbiota of maize ears. (iii)The number of reads and
OTUs obtained from the sequencing is comparable to those obtained by a previous work
carried out on embryos of wheat [57].

These three considerations confirm that the low number of bacterial reads and of
OTUs is most likely a faithful depiction of what is present inside the embryos.

The analysis of beta-diversity in the microbial communities highlighted that the year
of sampling is not a statistically significant variable, while the genotype of the accessions
is highly significant, though it explains only a minor part of the variation between the
microbial communities. This significant but small variation is in line with previous results
that show how the main difference in the selection of bacteria within seeds can be found
between wild and domesticated Zea mays rather than between landraces and modern
hybrids [59]. This variation, despite being small, allows the distinction of two groups
between the accessions: one that includes accession N in both years and accession W in
2017, and one that groups all other accessions. The first group is characterized by a higher
abundance of Firmicutes, while the second one shows an embryo microbiota dominated by
Proteobacteria. It is interesting to note that these accessions have very distinct geographic
origins (North Italy and South Africa, respectively), are on completely opposite ends of
the spectrum regarding kernel pigmentation (black and white, respectively), and show a
different length of their cultural cycle (FAO classification 400 and 800, respectively). The
only trait that they show to have in common is higher resistance to fusarium ear rot, as
shown by the in-field inoculation assays.

It must be pointed out that the results obtained from the field experiments are related
to a different year from any of those in which the microbiota was examined. Accession N
had fairly consistent results regarding the microbiota structure in both examined years, so
it is sensible to hypothesize that the general microbiota in 2020 was similar to that seen
in 2017 and 2018. Accession W, instead, was shown to group in either cluster in the two
examined years and, therefore, to conclude whether the microbiota composition is related
to its reduced rate of F. verticillioides infection through the silk channels, data regarding
its microbiota composition in that year would be necessary. Currently, involvement of a
genetic resistance factor in accession W, unrelated to microbiota structure, is an equally
valid explanation of the obtained results.

While it is tempting to see a cause-effect relationship between the structure of the
embryo microbiota and the resistance to fusarium ear rot, other explanations, such as
conserved maize genes implicated in fusarium resistance, cannot be discarded. Further
studies will be needed to discern the real impact of microbiota composition and host
genetics on the resistance/susceptibility to this disease.

Some insights can be taken from the results obtained from the analysis of the cultivable
bacteria regarding their ability to exert a biocontrol activity against F. verticillioides. A
first consideration is that there is no correspondence between the antifungal activity of
single strains and the overall resistance to fusarium ear rot of the variety from which the
bacteria were isolated. Most of the bacteria with antifungal activity, and those with the
highest activity, were isolated from the hybrid accession, which shows severe damage
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from F. verticillioides infection; at the same time, only a few effective strains were isolated
from varieties N and W. This can be explained when taking into consideration that (i) the
concentration of the bacterial cells for each given strain in the embryo is lower than that
used during the experiment, (ii) the exogenous application of the bacteria was carried
out on the surface of the seed after sterilization, and (iii) some bacteria may not show
antifungal activity on their own but may contribute synergically with other strains to the
protection of the seed in natural conditions.

Another consideration is that the biocontrol effect during the in vivo assays was seen
only for the bacteria isolated from maize, and not for the bacteria isolated from other plants
included in the study. This excludes the possibility that the effect is related to a generic
plant response to the high concentration of bacteria to which the seeds were exposed or to
a competition for space on the surface of the seed between bacteria and F. verticillioides. It
is therefore more likely that these strains have co-evolved with the fungal pathogen and
have become more effective in restricting the growth of Fusarium verticillioides than bacteria
that have never encountered this pathogen before. Despite these encouraging preliminary
results, the in-field applicability of these strains needs to be demonstrated at various levels:
their safety will have to be assessed, as well as their ability to contain the disease in real
operative conditions, and their effect on the accumulation of mycotoxins in the kernels.
Furthermore, both in the in vivo assay using the bacteria isolated from maize and in the
inoculation assay in field, the best results showed an almost complete elimination of the
damage caused by the exogenously applied F. verticillioides conidia, but seemingly had
no effect against the natural infection. This could be explained by a spatial limitation of
the assays carried out, that put the bacteria only on the surface of the seed and inoculated
the pathogen in maize through the silk channel only, or by different interactions with the
Fusarium present in field. Further experiments will be needed to understand the precise
mechanism behind these interactions.

Should these strains prove effective in field conditions, they could be interesting for
their embryo localization which could make them possible to be introduced in the seeds
before sowing either by treatment of the flowers [60] or, should they be inheritable, by
selective breeding. This would allow to obtain plants that benefit from this protective effect
from the moment of germination without needing to apply the bacteria through a coating.
Also, the persistence of these strains in the kernels may contribute to a lower accumulation
of mycotoxin and/or to a lower spoilage rate, as it has been suggested that the microbiota
plays a crucial role in the development of postharvest losses [61].

5. Conclusions

This study provided preliminary results regarding the relevance of the embryo-
associated bacteria of different maize accessions, both as communities and as single strains,
in contributing towards resistance against fungal infections. Further studies are planned
to further dissect the importance of these microbe-associated traits and their possible
heritability to determine their possible utilization in future breeding programs.
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