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22 ABSTRACT

23 The microbial communities thriving at the root-soil interface have the potential to improve 

24 plant growth and sustainable crop production. Yet, how agricultural practices, such as the 

25 application of either mineral or organic nitrogen fertilisers, impact on the composition and 

26 functions of these communities remains to be fully elucidated. By deploying a two-pronged 

27 16S rRNA gene sequencing and predictive metagenomics approach we demonstrated that 

28 the bacterial microbiota of field-grown tomato (Solanum lycopersicum) plants is the product 

29 of a selective process that progressively differentiates between rhizosphere and root 

30 microhabitats. This process initiates as early as plants are in a nursery stage and it is then 

31 more marked at late developmental stages, in particular at harvest. This selection acts on 

32 both the bacterial relative abundances and phylogenetic assignments, with a bias for the 

33 enrichment of members of the phylum Actinobacteria in the root compartment. Digestate-

34 based and mineral-based nitrogen fertilisers trigger a distinct bacterial enrichment in both 

35 rhizosphere and root microhabitats. This compositional diversification mirrors a predicted 

36 functional diversification of the root-inhabiting communities, manifested predominantly by 

37 the differential enrichment of genes associated to ABC transporters and the two-component 

38 system. Together, our data suggest that the microbiota thriving at the tomato root-soil 

39 interface is modulated by and in responses to the type of nitrogen fertiliser applied to the 

40 field.

41

42 Additional keywords: Solanum lycopersicum, Rhizosphere, Root, Microbiota, Nitrogen, 

43 Fertilisers, Digestate.
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44 INTRODUCTION

45 Limiting the negative impact of agricultural practices on the environment while preserving 

46 sustainable crop yield is one of the key challenges facing agriculture in the years to come. 

47 As an essential element for plant nutrition, nitrogen represents a paradigmatic example of 

48 such a challenge. Moreover, due to the combined effect of elevated solubility and little 

49 retention in soils, the lack of this element is and will be one of the major yield-limiting factors 

50 worldwide (Tilman et al., 2011).  At the same time, the application of synthetic nitrogen 

51 fertilisers is, in many agricultural systems, a low efficiency approach which has been linked 

52 with the degradation of natural resources (Elser and Bennett, 2011). One of the strategies 

53 adopted to limit the economic and environmental footprint of crop production while 

54 maintaining sustainable yield is the “recycling” of, mineral-rich, biodegradable products of 

55 the livestock and agricultural sectors. 

56 One example of this approach is the application of the digestate, a by-product of the 

57 anaerobic digestion of organic waste for the production of biogas (Möller and Müller, 2012) 

58 as renewable soil amendment for crop production. The digestate is a mixture of partially-

59 degraded organic matter, microbial biomass and inorganic compounds (Alburquerque et al., 

60 2012). We recently demonstrated how the digestate can be efficiently used as innovative 

61 fertiliser and plant growing media (Ronga et al., 2018b; Ronga et al., 2018a; Ronga et al., 

62 2019), yet the impact of digestate applications on the agroecosystem remains to be fully 

63 elucidated.

64 For instance, the digestate can be a source of phytoavailable nitrogen, in particular 

65 ammonium, capable of impacting on organic matter mineralisation and emission of carbon 

66 dioxide from the soil profile (Grigatti et al., 2011). Therefore, it is legitimate to hypothesize 

67 that such treatments impact on the composition of the microbial communities thriving at the 

68 root-soil interface, collectively referred to as the rhizosphere and root microbiota, which play 
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69 a critical role in mobilisation of mineral elements for plant uptake (Alegria Terrazas et al., 

70 2016). Congruently, several studies indicate that the application of biogas  by-product 

71 enhances soil microbial activity (Möller, 2015) and the availability of phytohormones (Scaglia 

72 et al., 2015). However, the intertwined relationship among microbiota composition, soil 

73 characteristics and amendments as well as host plant species-specificity (Bulgarelli et al., 

74 2013) makes it difficult to infer first principles.

75 This is particularly true for field-grown crops such as tomato (Solanum lycopersicum L.), one 

76 of the most cultivated horticultural crops globally with plantations occupying an area of 4.8 

77 million of hectares with a production of 182 million tonnes in 2017 (FAO 2017). Notably, this 

78 species is also an excellent experimental model for basic science investigations: tomato was 

79 one of the first crops whose genome was sequenced (Consortium, 2012) and provided a 

80 superb platform to test the significance of genome editing for evolutionary studies and plant 

81 breeding (Zsögön et al., 2018). Perhaps not surprisingly, tomato is gaining momentum as 

82 an experimental system to study host-microbiota interactions in crop plants. Recent 

83 investigations revealed novel insights into the assembly cues of the microbiota associated 

84 to this plant (Bergna et al., 2018; Toju et al., 2019) and the contribution of microbes thriving 

85 at the tomato root-soil interface to pathogen protection (Chialva et al., 2018; Kwak et al., 

86 2018). However, the composition and functional potential of the tomato microbiota and their 

87 interdependency from nitrogen fertilisers remain to be elucidated.

88 Here we report the metagenomics characterisation of the microbiota thriving at the root-soil 

89 interface of field-grown tomato plants. We hypothesize that nitrogen treatments shape and 

90 modulate the contribution of the tomato microbiota for crop yield. To test this hypothesis, we 

91 focused on processing tomato exposed to different nitrogen fertilisers, either digestate-

92 based or containing a mineral fraction. By using a 16S rRNA amplicon sequencing survey 

93 we deciphered how the microhabitat (i.e., either rhizosphere or root) sculpts the tomato 
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94 microbiota which, in turn, is fine-tuned by the type of fertiliser applied. Finally, by using a 

95 predictive metagenomics survey, we inferred the functional diversification imposed by the 

96 nature of the fertilisers on the root microbiota.

97

98
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99 MATERIALS AND METHODS

100 Field site 
101 A field trial was established in a tomato farm near the city of Ravenna (44°25'40.8"N 

102 12°05'53.3"E), Emilia Romagna Region, Italy, during the 2017 growing season. During the 

103 period from transplant to harvest, the minimum and the maximum average temperatures 

104 recorded were 17.1°C and 32.8°C, respectively, and the rainfall was 101.7 mm. The soil had 

105 a silty loam texture (14% clay, 51% silt, 35% sand), a pH 8.3 (in H2O), 1.1 g kg−1 total N 

106 (Kjeldahl method), 7 mg kg−1 available P (Olsen method), 129 mg kg−1 exchangeable K 

107 (Ammonium acetate), and 9 g kg−1 organic matter (Walkey-Black method). A schematic 

108 illustration of the field trial is depicted in Supplementary Figure S1.

109 Plant material
110 We used the tomato cultivar ‘Fokker’, a processing-type genotype with blocky fruit, late fruit 

111 ripening and suitable for tomato puree, for the experimentation. Seedlings were provided by 

112 Bronte Soc. Coop. Agr. A.R.L. (Mira, Italy). Processing tomato seedlings were transplanted 

113 at the end of May when they were 6-week old corresponding to plants at the fourth true leaf 

114 stage. Plant density was 3 plants m-2. Plants were transplanted into single row, with a 

115 spacing of 0.22 m between plants in each row and 1.50 m between rows. 

116 Experimental design 
117 We established a randomized complete design with three replicates and seven treatments: 

118 pelleted digestate (hereafter PE), liquid digestate (LD), slow-acting liquid digestate (SRLD), 

119 organo-mineral fertiliser based on digestate (SC), synthetic fertiliser (MF), slow-acting 

120 synthetic fertiliser (SRMF), and no fertilization treatment (NT). The composition of the 

121 treatments is summarised in Table 1. For each treatment, we applied a total amount of 

122 nitrogen in the ratio 150 N kg ha−1 on the basis of soil analysis, crop rotation and crop 

123 nutrients required. Nitrogen was supplied at transplanting time with the exception of the 

124 synthetic fertiliser treatment. For this latter treatment, the amount of total Nitrogen was 
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125 equally divided and applied in 3 times (transplanting, full flowering and fruit ripening) using 

126 ammonium nitrate in the first treatment and calcium nitrate in the second and in the third 

127 ones. During the trial, 600 m3 ha-1 of irrigation water was distributed by drip irrigation to each 

128 treatment. The other soil and crop management practices were performed according to the 

129 production rules of Emilia Romagna Region, Italy. Briefly, weeds control was performed with 

130 a single treatment (on 11th June) using products based on metribuzin and propaquizafop. 

131 Sulphur and Copper were used to control phytopatogenic fungi while imidacloprid, 

132 abamectin and spinosad were used as insecticide.  

133 Yield traits
134 At harvest we determined the marketable yield (t ha-1), as a weight of fully ripe fruits, and 

135 the solid soluble content (°Brix t ha-1) as a proxy for fruit quality. The °Brix parameter was 

136 determined using the digital refractometer HI 96814 (Hanna, Italy), while the °Brix t ha-1 was 

137 calculated by multiplying the hectare marketable yield by °Brix and dividing the result by 

138 100.

139 Root, Rhizosphere and Bulk soil Sampling and DNA Extraction  
140 At transplanting time (May 2017), 5 root specimens per treatment were collected. Upon 

141 uprooting, soil particles loosely bound to roots were dislodged by hand shaking and root 

142 segments of ~ 6 cm were placed in sterile 50 mL tubes. The samples were stored in a 

143 portable cooler (~ 4°C), transported to the laboratory and immediately processed. Root 

144 specimens were incubated in 30 mL of PBS (Phosphate buffered saline) and placed on a 

145 shaker for 20 minutes in order to separate the soil tightly adhering to plant material, which 

146 we operationally defined as “rhizosphere”, from the roots. The first tubes were centrifuged 

147 for 20 minutes at 4,000 x g and the rhizosphere pelleted was collected in liquid nitrogen and 

148 stored at -80°C. The roots were moved to a new sterile tube containing 30 mL PBS and 

149 sonicated by Ultrasonics Sonomatic Cleaner (Langford Ultrasonics, Birmingham, UK) for 10 

150 minutes (intervals of 30 seconds pulse and 30 seconds pause) at 150 W, as previously 
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151 reported (Schlaeppi et al., 2014) to enrich for endophytic microorganisms. Roots were then 

152 washed in the same new buffer and dried on sterile filter paper. After few minutes, the roots 

153 were moved to 50 mL tubes and frozen in liquid nitrogen for storage at -80°C. Three 

154 independent soil samples were harvested from unplanted soil in different points of the field, 

155 frozen in liquid nitrogen and stored at -80°C. At harvest time (September 2017) the whole 

156 plants were harvested, 5 roots per treatment and 3 bulk soil samples were collected, 

157 prepared and stored like the previous samples. Frozen root samples were pulverized in a 

158 sterile mortar using liquid nitrogen prior DNA preparation. DNA was extracted from all the 

159 specimens (i.e., bulk soil, rhizosphere and pulverized roots) using the FastDNA® SPIN Kit 

160 for Soil (MP Biomedicals, Solon, USA) following the instruction manual provided by 

161 manufacturer. DNA samples were diluted using 50 µL DES water and quantified using the 

162 Nanodrop 1000 Spectrophotometer (Thermo Scientific, Wilmington, United States).

163 16S rRNA Gene Sequencing
164 The sequencing library was generated using primers specific (515F 5’-

165 GTGCCAGCMGCCGCGGTAA-3’ and 806R 5’-GGACTACHVGGGTWTCTAAT-3’) for 

166 hypervariable V4 region of the 16S rRNA gene. The reverse primers included a 12-mer 

167 unique “barcode” sequences (Caporaso et al., 2012) to facilitate the multiplexing of the 

168 samples into a unique sequencing run. Individual PCR reactions were performed as 

169 previously reported (Robertson-Albertyn et al., 2017), with the exception of the concentration 

170 of the Bovine Serum Albumin, added at 10 µg/reaction, and the addition of a Peptide Nucleic 

171 Acid (PNA) blocker (PNA Bio, Newbury Park, United States) at a concentration of 0.5 

172 µM/reaction to inhibit plastidial amplification. For each barcoded primers, three technical 

173 replicates and a no-template control (NTC) were organised and processed starting from a 

174 unique master mix. Five microliters of amplified samples and cognate NTCs were inspected 

175 on a 1% (w/v) agarose gel. Two independent sets of triplicated amplicons, displaying the 

176 expected amplicon size and lacking detectable contaminations, were combined in a 
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177 barcode-wise manner and purified using the Agencourt AMPure XP kit (Beckman Coulter, 

178 Brea, United States) with a ratio of 0.7 mL AMPure XP beads per 1 mL of sample. Purified 

179 DNA samples were quantified using Picogreen (Thermo Fisher, United Kingdom) and 

180 combined in an equimolar ratio into an amplicon pool. This latter material was used for the 

181 preparation of a MiSeq run at the Genome Technology facilities of the James Hutton Institute 

182 (Invergowrie, UK) as previously reported (Robertson-Albertyn et al., 2017).

183

184 OTU Table Generation and pre-processing
185 We used QIIME, version 1.9.0 (Caporaso et al., 2010) to process the sequencing output of 

186 the MiSeq machine. Briefly, the command join_paired_ends.py was used to decompress 

187 and merged (minimum overlap 5bp) forward and reverse read FASTQ files. Next, we 

188 removed in silico low-quality sequencing reads and sequencing reads without the barcode 

189 information. Then, the reads were assigned to individual samples. In these analyses, the 

190 command split_libraries_fastq.py was used imposing a minimum PHRED score of 20. The 

191 resulted high-quality reads were assembled into an Operational Taxonomic Unit (OTU) table 

192 at 97% sequence identity. We used a ‘closed reference’ approach for OTU-picking using the 

193 command pick_closed_reference_otus.py. We imposed the Green Genes database version 

194 13_5 (DeSantis et al., 2006) as a reference database to identify microbial OTUs and prune 

195 for chimeric sequences. We used SortMeRNA algorithm for OTU -picking and taxonomy 

196 assignment. Finally, OTUs whose representative sequences were classified as either 

197 chloroplast or mitochondria, as well as OTUs accruing only one sequencing read over the 

198 entire dataset (i.e., singletons), were depleted in silico using the function 

199 filter_otus_from_otu_table.py.

200
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201 Data visualisation and statistical analyses
202 Agronomic traits were analysed by Analysis of Variance (ANOVA) using GenStat 17th (VSN 

203 International, Hemel Hempstead, UK). Means were compared using Bonferroni’s test at the 

204 5% level.

205 The OTU table produced in QIIME was analysed in R using a custom script developed from  

206 Phyloseq package (McMurdie and Holmes, 2013).

207 Initially, the data were filtered removing the samples with less than 1,000 reads and the 

208 OTUs with less than 10 reads in at least 5% of the samples. For alpha-diversity calculation, 

209 sequencing reads were rarefied at an even sequencing deep of 18,467 reads per sample 

210 retaining 2,439 unique OTUs. The number of Observed OTUs and Chao1 index were used 

211 as richness estimators, while the Shannon index was used for evaluating the evenness. 

212 Upon inspecting distribution of the data using a Shapiro-Wilk test, the means of rhizosphere 

213 and root samples at harvest time were compared using a non-parametric Wilcoxon rank sum 

214 test. Next, we performed a non-parametric Kruskal–Wallis test independently on 

215 rhizosphere and root samples to identify significant effect of the individual treatments on the 

216 ecological indices.

217 For beta-diversity calculation, the original counts (i.e., not rarefied) were transformed to 

218 relative abundances and we imposed an abundance threshold to target PCR-reproducible 

219 OTUs. The differences among microbial communities of the samples were computed using 

220 Bray-Curtis index and weighted Unifrac index, with this latter index including phylogenetic 

221 information in the analysis (Lozupone and Knight, 2005). A Principal Coordinates Analysis 

222 (PCoA) was generated to visualize similarities and dissimilarities of microhabitats and 

223 treatments. In order to assess the effects of microhabitats and the treatments on the 

224 bacterial community composition, a Permutational Multivariate Analysis Of Variance 

225 (PERMANOVA) on distance matrices was implemented using the function Adonis in  p a 
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226 two-pronged approach. First, we assessed the effect of nursery/harvest stage on 

227 microhabitat composition. Next, we used the same test to assess the impact of the treatment 

228 on rhizosphere and root specimens at harvest stage. In the two approaches, the computed 

229 R2 therefore reflects the proportion of variance explained by the given factor in the group of 

230 samples tested.  

231 Finally, original counts were used to perform a differential analysis to identify individual 

232 bacteria differentially enriched in the tested samples using DESeq2 (Love et al., 2014).

233 The phylogenetic tree was constructed using the representative sequences of the OTUs 

234 significantly enriched in rhizosphere and root specimens and annotated with iTOL (Letunic 

235 and Bork, 2006).

236 Functional predictions 
237 Tax4Fun (Asshauer et al., 2015) package in R was used as a predictive tool to obtain a 

238 functional profile based on 16S rRNA gene data. Metabolic capabilities are calculated by 

239 linking the amplicon data phylogenetic and abundance profile to a set of pre-computed 

240 metabolic reference profiles, based on the KEGG Ortholog (KO) database (Kanehisa et al., 

241 2008). The input for this analysis was an OTU table obtained with the representative 

242 sequences of the OTU table previously generated (see above), reclassified using 

243 SILVA_115 taxonomic database (Quast et al., 2013). Similar to a previously reported 

244 operational protocol (Kavamura et al., 2018), we focused our analysis in prokaryotic 

245 functional categories related to amino acid metabolism, carbohydrate metabolism, cell 

246 motility, energy metabolism, membrane transport, metabolism of terpenoids and polyketides 

247 and two-component system, trimming the rest of predicted functions from the Tax4fun 

248 output. A statistical comparison between two groups using a Welch’s t-test (Bluman, 2009) 

249 filtered at a p-value < 0.01 with Storey’s correction for false discovery rate (Storey and 
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250 Tibshirani, 2003) was performed in STAMP, Statistical Analysis of Metagenomic Profiles 

251 (Parks et al., 2014).

252 Data and scripts availability
253 The 16S rRNA gene sequences presented in this study are available at the European 

254 Nucleotide archive under the study accession number PRJEB32219. The scripts to 

255 reproduce the statistical analysis and figures are available at https://github.com/BulgarelliD-

256 Lab/Tomato_nitrogen. Data frames required for scripts reproducibility are included in 

257 Supplementary Database 1.

258 RESULTS

259 Fertiliser treatment impacts on yield and quality of processing tomato
260 At harvest time the two most important parameters such as marketable yield and fruit quality 

261 were measured to evaluate the effect of 7 different fertiliser performances on processing 

262 tomato (Figure 1). The fertiliser treatments had a significant effect on fresh biomass of fruits 

263 (ANOVA, Bonferroni’s test, P < 0.001). Pelleted digestate registered the best performance 

264 followed by synthetic fertiliser and slow acting liquid digestate. In addition, the different 

265 fertilisers influenced significantly also the quality of processing tomato (Figure 1) (ANOVA, 

266 Bonferroni’s test, P < 0.001).

267 The assembly dynamics of the bacterial microbiota of field-grown processing tomato
268 To gain insights into the relationships between yield traits and microbiota composition in 

269 field-grown processing tomato plants, we generated 5,546,303 high quality 16S rRNA gene 

270 sequences for the 86 samples generated in this study.

271 Upon in silico depletion of OTUs classified as Mitochondria and Chloroplast we reduced the 

272 number of analysable sequences to 4,645,503 with a retaining proportion of 83.7% of the 

273 original sequences (mean per samples = 54,017.48 reads; max = 111,213 reads; min = 272 

274 reads). The data were further filtered removing the samples with less than 1,000 reads as 
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275 well as the OTUs with less than 10 reads in 5% of samples. This allowed us to retain 2,515 

276 unique OTUs accounting for 4,308,580 high quality reads and 85 samples.

277 Then, we computed alpha-diversity calculations on a dataset rarefied at 18,467 reads per 

278 sample and alpha-diversity was investigated considering two microhabitats (root and 

279 rhizosphere) and the seven fertiliser treatments. OTUs richness was assessed by Chao1 

280 index and Observed OTUs while the OTUs evenness was assessed by Shannon index. This 

281 analysis revealed a significant effect of the microhabitat on the characteristics of the 

282 microbiota thriving at the tomato root-soil interface: regardless of the treatment, the root 

283 microhabitat emerged as less diverse and even compared to the rhizosphere one (Wilcoxon 

284 rank sum, p <0.01, Figure 2). This observation suggests that root microhabitat represents a 

285 gated community compared to the surrounding soil environment. Conversely, the treatment 

286 impacted only the number of OTUs observed in the rhizosphere compartment (Kruskal-

287 Wallis non parametric analysis of variance followed by Dunn’s post-hoc test p < 0.05. Figure 

288 2).

289 Congruently, beta-diversity analysis computed on the non-rarefied dataset using both 

290 weighted Unifrac and Bray-Curtis indicated a microhabitat-dependent microbiota 

291 diversification. In particular, the weighted Unifrac matrix visualised using a Principal 

292 Coordinates Analysis revealed such a microhabitat effect on samples processed at harvest 

293 time along the axis accounting for the major variation. Interestingly, younger nursery 

294 samples displayed a similar degree of diversification, although their communities were 

295 separated from the harvest samples on the axis accounting for the second source of 

296 variation (Figure 3). These data were supported by a PERMANOVA which attributed a R2 

297 of 30% to the microhabitat, a R2 of 28% to the ‘Nursery/Harvest effect’ and a R2 of 2% to 

298 their interactions (Adonis test, 5,000 permutations, p <0.01). The analysis conducted on 

299 rhizosphere and root samples at harvest stage revealed that, congruently with the observed 
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300 diversification along the axis accounting for the major variation, the microhabitat remained 

301 the major driver of the tomato communities (R2 47%, Adonis test, 5,000 permutations, p 

302 <0.01) while the individual fertiliser treatments impacted these plant-associated microbial 

303 assemblages to a lesser, but significant, extent (R2 13%, Adonis test, 5,000 permutations, p 

304 <0.01). This suggest that, rather than on richness per se, the fertiliser treatment impacts on 

305 the abundances and phylogenetic assignments of members of the tomato microbiota.  

306 Remarkably, the Bray-Curtis matrix produced a congruent results, although the temporal 

307 effect (i.e., nursery vs. harvest time) explained slightly more variation (~ 29%; 

308 Supplementary Figure S2) than microhabitat diversification manifested along the second 

309 axis of variation (~ 26%; Supplementary Figure S2). Crucially, also in this case the observed 

310 diversification was supported by a PERMANOVA which attributed a R2 of 23% to the 

311 microhabitat, a R2 of 29% to the ‘Nursery/Harvest effect’ and a R2 of 3% to their interactions 

312 (Adonis test, 5,000 permutations, p <0.01). 

313 Differential bacterial enrichments define microhabitat and treatment “signatures” on the 
314 field grown tomato microbiota
315 To gain insights into individual members of the tomato microbiota responsible for the 

316 observed diversification we implemented a series of pair-wise comparisons among 

317 microhabitats and treatments at harvest stage. We took a two-pronged approach. First, we 

318 identified bacteria underpinning the microhabitat effect i.e., the selective enrichment of 

319 bacteria in the roots and the rhizosphere microhabitats amended with no fertiliser. Next, we 

320 assessed the effect of the fertiliser treatment on roots and rhizosphere bacterial composition 

321 by comparison with bacteria enriched in untreated samples.

322 This allowed us to identify 170 bacterial OTUs whose abundance was significantly enriched 

323 in and differentiated between rhizosphere specimens and unplanted soil samples (Wald test, 

324 p <0.01, FDR corrected; Supplementary database 1). Similarly, we identified 374 bacterial 

325 OTUs whose abundance was significantly enriched in and differentiated between root 
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326 specimens and unplanted soil samples (Wald test, p <0.01, FDR corrected; Supplementary 

327 database 1). Of these differentially enriched bacteria, 96 OTUs represented a set of tomato-

328 competent OTUs capable of colonising both the rhizosphere and root environments. When 

329 we then looked into the taxonomic affiliations of this tomato-competent microbiota, we 

330 discovered that it is dominated by members of Actinobacteria, Bacteroidetes, Alpha-, Beta-

331 , Gamma- and Deltaproteobacteria as well as Verrucomicrobia (Figure 4). Strikingly, the 

332 taxonomic investigation revealed a bias for Actinobacteria in the root compartment, possibly 

333 reflecting an adaptive advantage of members of this phylum in colonising the endophytic 

334 environment.

335 Interestingly, each fertiliser treatment had a distinct impact on these tomato-enriched 

336 microbiota. The pelleted digestate (PE) and the slow-acting synthetic fertiliser (SRMF) 

337 yielded the highest number of uniquely enriched OTUs regardless of the microhabitat 

338 investigated, albeit with a distinct pattern: the SRMF had a more pronounced effect on the 

339 rhizosphere communities while the PE impacted more on the bacteria thriving in association 

340 with root tissues. (Wald test, p <0.01, FDR corrected; Figure 5; Supplementary database 1). 

341 Interestingly, when we inspected the taxonomic composition of the bacteria differentially 

342 impacted by the fertiliser treatment we observed an increase of the number of OTUs 

343 belonging to phylum of Actinobacteria. In particular, PE had 12 OTUs out of 80 and 14 OTUs 

344 out of 105, in root and rhizosphere, respectively, belonging to phylum Actinobacteria. While, 

345 MF had 15 OTUs out of 38 and 22 OTUs out of 49 in root and rhizosphere, respectively, 

346 belonging to phylum Actinobacteria (Supplementary database S1). Within this phylum we 

347 observed the presence of OTUs classified as Streptomyces spp., Agromyces sp., 

348 Microbispora sp. and Actinoplanes spp.

349 Together these data suggested that the enrichment of specific bacteria underpins the 

350 observed microhabitat effect whose magnitude is fine-tuned by the applied fertiliser.
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351 Organic- and synthetic-based fertiliser trigger different metabolic capacities in the tomato 
352 root microbiota
353 To investigate the ecological significance of the observed differential recruitments among 

354 fertiliser treatment we employed a predictive metagenomics approach. Briefly, we inferred 

355 in silico the functions encoded by the tomato microbiota at harvest stage (Materials and 

356 Methods) and we grouped the samples in digestate-based (i.e., PE, LD and SRLD; hereafter 

357 ‘organic’) and treatments containing at least a synthetic component (i.e., SC, MF and SRMF; 

358 hereafter ‘mineral’). We observed that the functions putatively encoded by the communities 

359 exposed to either organic or mineral fertilisers can discriminate between treatments in both 

360 microhabitats (PERMANOVA: Rhizosphere samples R2 = 14%, p value <0.01, 5,000 

361 permutations; Root samples R2 = 16%, p value <0.01, 5,000 permutations). Congruently, 

362 we identified a set of 14 functions differentially enriched between root communities exposed 

363 to either group of treatments (Welch t-test, p <0.01, FDR corrected; Figure 6). Interestingly, 

364 we observed a striking dichotomy between the two groups of treatments: communities 

365 exposed to mineral fertilisers are predicted to enrich for genes implicated in the ABC 

366 transporter machinery while bacteria exposed to the organic treatments are predicted to 

367 enrich for genes implicated in the two-component system. These two set of genes are 

368 dominant in communities exposed to both treatments and are also associated to additional 

369 distinct enrichment patterns, most notably including nitrogen metabolism (organic 

370 communities) and tetracycline biosynthesis (mineral communities).

371 These results suggest that, within tomato roots, the observed taxonomic diversification 

372 underpins a functional specialisation of the microbiota which, in turn, may impact on plant 

373 growth development and health.

374 DISCUSSION

375 This study revealed that all nitrogen treatments led to an increase of tomato production in 

376 comparison with the no fertilization treatment (fold change between 0.8 and 1.73) confirming 
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377 that, in the tested conditions, nitrogen limits the yield potential of processing tomato crops 

378 as observed in previous studies (Ronga et al., 2015; Ronga et al., 2017). Yet, despite the 

379 same amount of nitrogen was applied in each treatment (i.e., 150 kg ha-1), all the treatments 

380 were statistically different from each other. A prediction of this observation is that, under the 

381 tested conditions, the nature of the fertilisers, rather than the amount of nitrogen per se, 

382 affect the yield and the fruit quality of tomato plants. These observations and the putative 

383 contribution to fertiliser use efficiency of the microbial communities thriving at the root-soil 

384 interface (Alegria Terrazas et al., 2016), motivated us to investigate relationships between 

385 yield traits and the composition of the tomato rhizosphere and root microbiota under field 

386 conditions.

387 The tomato rhizosphere and root microbiota are gated communities
388 First, we characterised the rhizosphere and root microbiota of processing tomato with no 

389 treatment. Both alpha and beta diversity discriminated between the communities of 

390 seedlings and adult plants. Despite these differences, which could be attributed to both 

391 abiotic, e.g., time of residence in soil (Dombrowski et al., 2017), and biotic factors, e.g., 

392 developmental-conditioned rhizodeposits (Chaparro et al., 2014), it is striking to note how 

393 tomato plants displayed a rhizosphere and root compartmentalisation regardless of the 

394 developmental stage. This is congruent with the observation that in rice, the assembly and 

395 structural diversification of the microbiota is a rapid process which reaches a steady-state 

396 level within a few weeks from germination (Edwards et al., 2015). Closer inspection of the 

397 rhizosphere and root profiles at harvest stage indicates that these plant-associated 

398 communities are phylogenetically related to those of unplanted soil, suggesting that the 

399 initial tomato microbiota is further modulated by the growing conditions.

400 Despite this apparent relatedness, the selective enrichment of individual bacterial members 

401 of the microbiota discriminates between rhizosphere and root communities for mature plants 

402 from unplanted soil profiles (Figure 4). These enrichments displayed a bias for members of 
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403 the phyla Actinobacteria, Bacteroidetes, Proteobacteria (including the classes Alpha--, Beta-

404 , Delta- and Gammaproteobacteria) as well as Verrucomicrobia. Members of these taxa 

405 have routinely been reported in studies focussing on plant-competent bacteria under both 

406 laboratory and field conditions (Bulgarelli et al., 2013; Walters et al., 2018), suggesting that 

407 the experimental approach followed in this study can be considered representative for field-

408 grown processing tomato.

409 However, we noticed a differential selective pressure on the bacteria thriving either in the 

410 rhizosphere or in the root tissue: this latter environment produced more distinct profiles, i.e. 

411 more differentially enriched bacteria compared to unplanted soil, than the ones retrieved 

412 from the soil surrounding the roots. This indicates that the diversification of the tomato-

413 inhabiting microbial communities from the surrounding soil biota initiates in the rhizosphere 

414 and progresses through the root tissue, where it produces a more pronounced microbiota 

415 diversification compared to unplanted specimens. This observation is reminiscent of the 

416 recruitment patterns of other crops such as barley (Bulgarelli et al., 2015) but it is in striking 

417 contrast with studies conducted with both model (Bulgarelli et al., 2012) and field-grown 

418 (Rathore et al., 2017) Brassicaceae, whose ‘rhizosphere effect’ appears negligible.

419 We further noticed that the “root effect” on the microbiota was exerted also at phylogenetic 

420 level with a bias for the enrichment Actinobacteria. This observation is in apparent contrast 

421 with results gathered from the recent seed-to-seed characterisation of the tomato microbiota 

422 which revealed that, albeit averaging 8% of the sequencing reads across microhabitats, 

423 members of this phylum did not significantly discriminate root from rhizosphere specimens 

424 (Bergna et al., 2018). However, it is worth mentioning that these two studies differed in terms 

425 of both soil type and plant genotype used.

426 Together, our results suggest that both species- and soil-specific traits govern the assembly 

427 of the tomato microbiota in field-grown crops.
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428 Nitrogen source impacts on the structural and functional composition of the tomato 
429 microbiota
430 Next, we investigated the impact of the type of nitrogen fertiliser on the tomato microbiota 

431 and we demonstrated that each treatment produced “distinct signatures”, represented by 

432 specific selective enrichment, on both the rhizosphere and root communities. Despite 

433 microhabitat-associated variation, the effect of the application of pelleted digestate (PE) 

434 resulted in the most distinct microbial profile in the root compartment and the second largest 

435 number of specifically enriched OTUs in the rhizosphere Of note, the slow-acting mineral 

436 fertiliser (SRMF) follow a “complementary” pattern: its application yielded the greatest and 

437 the second greatest number of differentially enriched OTUs compared to untreated samples 

438 in the rhizosphere and root profiles, respectively. Remarkably, these two treatments had a 

439 discernible effect also on crop yield, with the PE treatment producing the best performance 

440 among the various fertilisers. Our data are congruent with studies conducted on wheat which 

441 observed a structural diversification of the soil and plant-associated communities exposed 

442 to either mineral or organic fertilisers (Kavamura et al., 2018). Yet, the numerical shift in 

443 terms of OTUs differentially enriched per se cannot explain the potential impact of these 

444 communities on crop yield: owing to the fact that the SMRF treatment, which is associated 

445 to a significant reduction in yield traits (compared to PE) is capable of triggering a 

446 comparable OTU enrichment.  

447 We therefore focused our attention on the taxonomical composition of the rhizosphere and 

448 root communities. In particular, we noticed that the proliferation of Actinobacteria in the root 

449 compartment was retained in the various treatments. The enriched Actinobacteria included 

450 Streptomyces spp., Agromyces sp., Microbispora sp. and Actinoplanes spp. 

451 (Supplementary Database 1). Streptomyces spp. are well-known bacteria able to produce a 

452 wide diversity of bioactive compounds able to promote plant growth and health (de Jesus 

453 Sousa and Olivares, 2016). On the other hand, members of the genus Streptomyces are 
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454 responsible of economically relevant plant diseases, most notably common scab of potato 

455 caused by S. scabies (Loria et al., 2006). 

456 Thus, the taxonomic diversification triggered by both microhabitat and treatment may 

457 underpin a functional diversification of the microbiota at the cross-road of mutualism and 

458 inter-species competition.

459 This functional diversification of the root communities is manifested by the differential 

460 enrichments of ABC transporter genes (mineral) and the two-component system (organic). 

461 Although predictive metagenomics is inherently limited by fact that the individual 

462 phylogenetic marker used (i.e., the 16S rRNA gene) may fail to recapitulate the genetic 

463 diversity existing among strains of the same phylogenetic lineage (Karasov et al., 2018)  , 

464 ABC transporters have previously been identified as genes underpinning rhizosphere 

465 competence in the microbiota of wheat and cucumber (Ofek-Lalzar et al., 2014). Likewise,  

466 the two-component system is required for the rhizosphere colonisation of the biocontrol 

467 agent Pseudomonas fluorescens WCS365 (De Weert et al., 2006). These observations 

468 indirectly support the results gathered from our predictive metagenomics approach. Owing 

469 the role played by these classes of genes in uptake of organic compounds (e.g., root 

470 exudates, cellular secretion) and stimulus-response mechanisms (e.g., chemotaxis) 

471 respectively, it is tempting to hypothesize that the different source of nitrogen define a 

472 different metabolic status in and in the vicinity of tomato roots which, in turn, requires a 

473 prompt adaptation of the root-inhabiting communities.

474 For instance, experimental data indicate that the abundance of phytoavailable nitrogen, i.e., 

475 the scenario of mineral fertiliser treatments, tends to repress the proliferation and activity of 

476 members of the microbiota (Ramirez et al., 2012; Terrazas et al., 2019), and this in turn may 

477 be reflected in the metabolism of secondary compounds (terpenoid and polyketide  

478 metabolism) and membrane transport (ABC transporters).
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479 A “true” comparative metagenomics investigation, whereby the individual communities are 

480 subjected to shot-gun sequencing, will be ultimately necessary to test these hypotheses. 

481 We further hypothesize that this adaptation is modulated by mineral nitrogen availability, as 

482 manifested by the differential enrichment of functions associated to nitrogen metabolism per 

483 se and aminoacids. This observation is congruent with results gathered from monocots 

484 wheat (Kavamura et al., 2018) and rice (Zhang et al., 2019) and suggests a cross-species 

485 pattern whereby plant’s adaptation to nitrogen forms and availability is mediated, at least in 

486 part, by the associated microbiota.

487 Finally, it is interesting to note how the production of antibiotics, namely tetracyline, is also 

488 among the functions differentially enriched between fertilisers. It is becoming increasingly 

489 clear how plant-associated bacteria can act as a reservoir of antimicrobial genes (Cernava 

490 et al., 2019) which can be deployed during inter-organismal competition in the plant 

491 microbiota. This hypothesis could be tested by leveraging on indexed- and genome-

492 annotated bacterial collection for the tomato microbiota, similar to the approach pursued 

493 with bacteria isolated from other plant species (Levy et al., 2018).

494 Our investigation suggests that the bacterial microbiota of field-grown processing tomato is 

495 the product of a selective process that progressively differentiates between rhizosphere and 

496 root microhabitats. This process initiates as early as plants are in a nursery stage and it is 

497 then more marked when plants reached the harvest stage. This selection a) acts both on 

498 the relative abundances and phylogenetic assignments of  members of the tomato 

499 microbiota, b) is modulated, at least in part, by the nitrogen fertiliser provided which, in turn, 

500 c) triggers different microbial metabolic specialisations within tomato roots. 

501 It is important to mention that the nitrogen fertiliser may also represent a microbial inoculant 

502 per se, in particular in the case of organic-based amendments. For instance, a comparative 

503 study of 29 different full-scale anaerobic digestion installations revealed that Firmicutes, 
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504 followed by Bacteroidetes and Proteobacteria, dominated the resulting microbial 

505 communities (De Vrieze et al., 2015). Considering the plant-associated profiles observed in 

506 this study, in particular the enrichment of Actinobacteria in the root communities, it is 

507 legitimate to hypothesize that the input digestate bacteria may act as in inoculum for a part 

508 of the tomato microbiota, which is further fine-tuned by the exposure to soil microbes.  Future 

509 studies, integrating the microbial profiling of the input fertiliser treatment, will be required to 

510 accurately elucidate microbial dynamics associated with the application synthetic (i.e., germ-

511 free) and organic fertilisers. 

512 Towards a lab-in-the-field approach to harness the potential of plant microbiota for climate-
513 smart agriculture 
514 Our experiments represent an example of how cultivation-independent approaches can be 

515 efficiently deployed to investigate the plant microbiota under field conditions. Although this 

516 type of investigation is not novel per se in tomato (Toju et al., 2019), our results revealed 

517 fundamentally novel insights into plant’s adaptation to nitrogen fertilisers and the implication 

518 for crop yield. Similar to what has recently been postulated for tomato pathogen protection 

519 (Kwak et al., 2018), our results predicts that the use of field-derived, sequencing data will 

520 allow scientists to identify “signatures” of the plant microbiota that can be targeted to 

521 enhance plant performance. This approach, which we define as lab-in-the-field, will be key 

522 towards the rationalisation of nitrogen (and other treatments) application in agriculture and 

523 we anticipate will pave the way for the effective exploitation of the plant microbiota for 

524 agricultural purposes (Schlaeppi and Bulgarelli, 2015; Toju et al., 2018).
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735 TABLES

736 Table 1. Composition and information on fertilisers used in this study.
737 TOC = Total organic carbon; N = Nitrogen; P = Phosphorus; K = Potassium; H2O = water 
738 content

Treatment TOC% (N)% (P)% (K)% H2O% Additional information
Synthetic fertiliser 
(MF) 41 Ammonium nitrate (N 26%) and 

calcium nitrate (N 15%)
Pelleted digestate 
(PE) 39.70 1.50 2.50 2.00 7.80 (Pulvirenti et al., 2015)
Slow acting liquid 
digestate (SRLD) 3.74 0.34 0.95 Liquid digestate plus the nitrogen 

stabilizer Vizura® (BASF, 2 L ha-1),
Liquid digestate 
(LD) 3.74 0.34 0.95

EC 1.07 dS m-1 and pH 8.3

Organo-mineral 
fertiliser (SC) 10.50 10.00 5.00 15.00 7.00

Produced by SCAM Spa (Modena, 
Italy), based on solid digestate for the 
organic fraction

Slow acting 
synthetic fertiliser 
(SRMF)

15.00 15.40 15.00
NPK Original Gold® (Compo Expert)

739

740
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741 FIGURE LEGENDS

742 Figure 1. Effect of the nitrogen treatments on tomato yield traits

743 Mean and standard deviation of (A) marketable yield and (B) Brix of tomato plants exposed 

744 to the following treatments: LD (Liquid Digestate), SRLD (Slow acting Liquid Digestate), PE 

745 (Pelleted Digestate); SC (Organo-mineral fertiliser); MF (Mineral Fertiliser); SRMF (Slow 

746 acting Mineral Fertiliser). Different letters denote statistically significant differences between 

747 treatments by Analysis of Variance (ANOVA). Means were compared using Bonferroni’s test 

748 at the 5% level (P <0.001).

749 Figure 2. The tomato root microbiota is a gated community

750 Average (A) number of observed OTUs, (B) Chao 1 index and (C) Shannon index computed 

751 on the indicated rhizosphere and root specimens.  Abbreviations LD (Liquid Digestate), 

752 SRLD (Slow acting Liquid Digestate),  PE (Pelleted Digestate); SC (Organo-mineral 

753 fertiliser); MF (Mineral Fertiliser); SRMF (Slow acting Mineral Fertiliser). Asterisks   denote 

754 statistically significant differences between microhabitat by non-parametric Wilcoxon rank 

755 sum test (P < 0.01). Different blue letters within individual microhabitats denote statistically 

756 significant differences between treatment means by Kruskal-Wallis non parametric analysis 

757 of variance followed by Dunn’s post-hoc test (P < 0.05); ns, no significant differences 

758 observed.

759 Figure 3. The tomato rhizosphere and root microbiota host compositionally different 

760 communities.

761 PCoA calculated using a weighted UniFrac matrix calculated on the OTUs clustered at 97% 

762 identity among the indicated microhabitat and treatments. Abbreviations: LD (Liquid 

763 Digestate), SRLD (Slow acting Liquid Digestate), PE (Pelleted Digestate); SC (Organo-

764 mineral fertiliser); MF (Mineral Fertiliser); SRMF (Slow acting Mineral Fertiliser).
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765 Figure 4. The enrichment of Actinobacteria is a distinctive feature of the tomato root 

766 microbiota.

767 Phylogenetic relationships of the OTUs enriched in rhizosphere and root compartment. 

768 Individual external nodes represent one of the OTUs enriched in either (or both) rhizosphere 

769 or root samples in no treatment conditions (Wald test, P value < 0.01, FDR corrected) whose 

770 colour reflects their taxonomic affiliation at Phylum level. A black bar in the outer rings 

771 depicts whether that given OTU was identified in the rhizosphere- or root-enriched sub-

772 communities, respectively. Phylogenetic tree constructed using OTUs 16S rRNA gene 

773 representative sequences.

774
775 Figure 5. Nitrogen fertiliser modulates bacterial enrichment in the tomato rhizosphere and 

776 root compartments. 

777 Number of OTUs significantly enriched (Wald test, P value < 0.01, FDR corrected) in the 

778 indicated treatment versus untreated controls in (A) rhizosphere and (B) roots. In each 

779 panel, blue bars denote the total number of enriched OTUs for a given treatment, the black 

780 bars denote the magnitude of the enrichment in either the individual treatment or among two 

781 or more treatments highlighted by the interconnected dots underneath the panels. 

782 Abbreviations: LD (Liquid Digestate), SRLD (Slow acting Liquid Digestate),  PE (Pelleted 

783 Digestate); SC (Organo-mineral fertiliser); MF (Mineral Fertiliser); SRMF (Slow acting 

784 Mineral Fertiliser).   

785 Figure 6. Digestate- and mineral-based fertilisers trigger a functional diversification of the 

786 tomato root microbiota. 

787 Prokaryotic functions discriminating between Digestate-based (indicated as ‘R_organic’: 

788 Liquid Digestate; Slow acting Liquid Digestate and Pelleted Digestate) and mineral-based 

789 fertilisers (indicated as ‘R_mineral’: Organo-mineral; Mineral Fertiliser and Slow acting 
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790 Mineral Fertiliser) retrieved from Tax4Fun functional profiles (Welch’s t-test FDR corrected, 

791 p<0.01).
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Figure 1. Mean and standard deviation of (A) marketable yield and (B) Brix of tomato plants exposed to the 
following treatments: LD (Liquid Digestate), SRLD (Slow acting Liquid Digestate), PE (Pelleted Digestate); 

SC (Organo-mineral fertiliser); MF (Mineral Fertiliser); SRMF (Slow acting Mineral Fertiliser). Different letters 
denote statistically significant differences between treatments by Analysis of Variance (ANOVA). Means were 

compared using Bonferroni’s test at the 5% level (P <0.001). 
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Figure 2.Average (A) number of observed OTUs, (B) Chao 1 index and (C) Shannon index computed on the 
indicated rhizosphere and root specimens.  Abbreviations LD (Liquid Digestate), SRLD (Slow acting Liquid 
Digestate),  PE (Pelleted Digestate); SC (Organo-mineral fertiliser); MF (Mineral Fertiliser); SRMF (Slow 

acting Mineral Fertiliser). Asterisks   denote statistically significant differences between microhabitat by non-
parametric Wilcoxon rank sum test (P < 0.01). Different blue letters within individual microhabitats denote 
statistically significant differences between treatment means by Kruskal-Wallis non parametric analysis of 

variance followed by Dunn’s post-hoc test (P < 0.05); ns, no significant differences observed. 
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Figure 3. PCoA calculated using a weighted UniFrac matrix calculated on the OTUs clustered at 97% identity 
among the indicated microhabitat and treatments. Abbreviations: LD (Liquid Digestate), SRLD (Slow acting 

Liquid Digestate), PE (Pelleted Digestate); SC (Organo-mineral fertiliser); MF (Mineral Fertiliser); SRMF 
(Slow acting Mineral Fertiliser). 
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Figure 4. The enrichment of Actinobacteria is a distinctive feature of the tomato root microbiota. 
Phylogenetic relationships of the OTUs enriched in rhzosphere and root compartment. Individual external 
nodes represent one of the OTUs enriched in either (or both) rhizosphere or root samples in no treatment 
conditions (Wald test, P value < 0.01, FDR corrected) whose colour reflects their taxonomic affiliation at 

Phylum level. A black bar in the outer rings depicts whether that given OTUs was identified in the 
rhizosphere- or root-enriched sub-communities, respectively. Phylogenetic tree constructed using OTUs 16S 

rRNA gene representative sequences. 
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Figure 5. Nitrogen fertiliser modulates bacterial enrichment in the tomato rhizosphere and root 
compartments. 

Number of OTUs significantly enriched (Wald test, P value < 0.01, FDR corrected) in the indicated treatment 
versus untreated controls in (A) rhizosphere and (B) roots. In each panel, blue bars denote the total number 
of enriched OTUs for a given treatment, the black bars denote the magnitude of the enrichment in either the 
individual treatment or among two or more treatments highlighted by the interconnected dots underneath 

the panels. Abbreviations LD (Liquid Digestate), SRLD (Slow acting Liquid Digestate),  PE (Pelleted 
Digestate); SC (Organo-mineral fertiliser); MF (Mineral Fertiliser); SRMF (Slow acting Mineral Fertiliser).   
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Figure 6. Prokaryotic functions discriminating between Digestate-based (indicated as ‘R_organic’: Liquid 
Digestate; Slow acting Liquid Digestate and Pelleted Digestate) and mineral-based fertilisers (indicated as 
‘R_mineral’: Organo-mineral; Mineral Fertiliser and Slow acting Mineral Fertiliser) retrieved from Tax4Fun 

functional profiles (Welch’s t-test FDR corrected, p<0.01). 
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Supplementary Figure S1. Images of the filed at (A) plant’s transplant and details of (B) an individual 
tomato plant and (C) the plantation at harvest stage. 
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Supplementary Figure S2. PCoA calculated using a Bray-Curtis matrix calculated on the OTUs clustered at 
97% identity among the indicated microhabitat and treatments. Abbreviations: LD (Liquid Digestate), SRLD 

(Slow acting Liquid Digestate), PE (Pelleted Digestate); SC (Organo-mineral fertiliser); MF (Mineral 
Fertiliser); SRMF (Slow acting Mineral Fertiliser). 
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