986 research outputs found

    Pencil beam characteristics of the next-generation proton scanning gantry of PSI: design issues and initial commissioning results

    Get PDF
    In this paper we report on the main design features, on the realization process and on selected first results of the initial commissioning of the new Gantry 2 of PSI for the delivery of proton therapy with new advanced pencil beam scanning techniques. We present briefly the characteristics of the new gantry system with main emphasis on the beam optics, on the characterization of the pencil beam used for scanning and on the performance of the scanning system. The idea is to give an overview of the major components of the whole system. The main long-term technical goal of the new equipment of Gantry 2 is to expand the use of pencil beam scanning to the whole spectrum of clinical indications including moving targets. We report here on the initial experience and problems encountered in the development of the system with selected preliminary results of the ongoing commissioning of Gantry

    Light emitting diodes as a plant lighting source

    Get PDF
    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements

    Experimental And Theoretical Analysis Of The Goswami Cycle Operating At Low Temperature Heat Sources

    Get PDF
    The Goswami cycle is a cycle that combines an ammonia-water vapor absorption cycle and a Rankine cycle for cooling and mechanical power purposes by using thermal heat sources such as solar energy or geothermal steam. In this paper, a theoretical investigation was conducted to determine the performance outputs of the cycle, namely, net mechanical power, cooling, effective first law efficiency and exergy efficiency, for a boiler and an absorber temperature of 85 °C and 35 °C, respectively, and different boiler pressures and ammonia-water concentrations. In addition, an experimental investigation was carried out to verify the predicted trends of theoretical analysis and evaluate the performance of a modified scroll expander. The theoretical analysis showed that maximum effective first law and exergy efficiencies were 7.2% and 45%, respectively. The experimental tests showed that the scroll expander reached a 30-40% of efficiency when boiler temperature was 85 °C and rectifier temperature was 55 °C. Finally, it was obtained that superheated inlet conditions improved the efficiency of the modified expander

    Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse

    Get PDF
    A free electron can temporarily gain a very significant amount of energy if it is overrun by an intense electromagnetic wave. In principle, this process would permit large enhancements in the center-of-mass energy of electron-electron, electron-positron and electron-photon interactions if these take place in the presence of an intense laser beam. Practical considerations severely limit the utility of this concept for contemporary lasers incident on relativistic electrons. A more accessible laboratory phenomenon is electron-positron production via an intense laser beam incident on a gas. Intense electromagnetic pulses of astrophysical origin can lead to very energetic photons via bremsstrahlung of temporarily accelerated electrons

    A motion model-guided 4D dose reconstruction for pencil beam scanned proton therapy.

    Get PDF
    Objective.4D dose reconstruction in proton therapy with pencil beam scanning (PBS) typically relies on a single pre-treatment 4DCT (p4DCT). However, breathing motion during the fractionated treatment can vary considerably in both amplitude and frequency. We present a novel 4D dose reconstruction method combining delivery log files with patient-specific motion models, to account for the dosimetric effect of intra- and inter-fractional breathing variability.Approach.Correlation between an external breathing surrogate and anatomical deformations of the p4DCT is established using principal component analysis. Using motion trajectories of a surface marker acquired during the dose delivery by an optical tracking system, deformable motion fields are retrospectively reconstructed and used to generate time-resolved synthetic 4DCTs ('5DCTs') by warping a reference CT. For three abdominal/thoracic patients, treated with respiratory gating and rescanning, example fraction doses were reconstructed using the resulting 5DCTs and delivery log files. The motion model was validated beforehand using leave-one-out cross-validation (LOOCV) with subsequent 4D dose evaluations. Moreover, besides fractional motion, fractional anatomical changes were incorporated as proof of concept.Main results.For motion model validation, the comparison of 4D dose distributions for the original 4DCT and predicted LOOCV resulted in 3%/3 mm gamma pass rates above 96.2%. Prospective gating simulations on the p4DCT can overestimate the target dose coverage V95%by up to 2.1% compared to 4D dose reconstruction based on observed surrogate trajectories. Nevertheless, for the studied clinical cases treated with respiratory-gating and rescanning, an acceptable target coverage was maintained with V95%remaining above 98.8% for all studied fractions. For these gated treatments, larger dosimetric differences occurred due to CT changes than due to breathing variations.Significance.To gain a better estimate of the delivered dose, a retrospective 4D dose reconstruction workflow based on motion data acquired during PBS proton treatments was implemented and validated, thus considering both intra- and inter-fractional motion and anatomy changes

    Features of dengue and chikungunya infections of colombian children under 24 months of age admitted to the emergency department

    Get PDF
    We aimed to assess clinical and laboratory differences between dengue and chikungunya in children <24 months of age in a comparative study. We collected retrospective clinical and laboratory data confirmed by NS1/IgM for dengue for 19 months (1 January 2013 to 17 August 2014). Prospective data for chikungunya confirmed by real-time polymerase chain reaction were collected for 4 months (22 September 2014-14 December 2014). Sensitivity and specificity [with 95% confidence interval (CI)] were reported for each disease diagnosis. A platelet count <150 000 cells/ml at emergency admission best characterized dengue, with a sensitivity of 67% (95% CI, 53-79) and specificity of 95% (95% CI, 82-99). The algorithm developed with classification and regression tree analysis showed a sensitivity of 93% (95% CI, 68-100) and specificity of 38% (95% CI, 9-76) to diagnose dengue. Our study provides potential differential characteristics between chikungunya and dengue in young children, especially low platelet counts. © The Author [2017].Universidad Nacional de Colombia, UN Johns Hopkins University1Departamento de Epidemiologia, Hospital Infantil Napoleón Franco Pareja—La Casa del Niño, Cartagena, Colombia 2Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia 3Departamento de Epidemiologia, Faculdade de Saúde Publica, Universidade de São Paulo, São Paulo, Brazil 4Facultad de Ingenería, Universidad Tecnológica de Bolívar, Cartagena, Colombia 5Facultad Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia 6Facultad de Medicina, Universidad de Cartagena, Cartagena, Colombia 7Instituto de Investigaciones Biologicas del Tropico, Universidad de Córdoba, Montería, Colombia 8Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA Correspondence: Angel Paternina-Caicedo, Hospital Infantil Napoleón Franco Pareja—La Casa del Niño, Bruselas Transversal 36 N. 36-33, Cartagena, Bolívar, Colombia. Tel: +1-412-3267809. E-mail or

    Sistema experto para el diagnóstico de plagas y enfermedades en los cultivos de Berenjena (Solanum Melongena L.) en la Región Caribe de Colombia

    Get PDF
    El presente trabajo se basó en la construcción de un sistema experto para el diagnóstico de plagas y enfermedades en los cultivos de berenjena en la región Caribe de Colombia, con el objetivo de ponerlo a disposición de los profesionales del agro dedicados a esta labor, y de esta manera facilitar el diagnóstico de plagas y enfermedades en este cultivo. El trabajo se realizó con una base de conocimiento la cual se adquirió mediante la participación de un experto en el área del Departamento de Ingeniería Agronómica y Desarrollo rural de la Universidad de Córdoba. Su construcción combina tecnologías tales como, swi-prolog, JAVATM, PostgrSQL y XML y fue desarrollado bajo los principios actuales de la Ingeniería del Software y soportado en un enfoque metodológico que garantiza confiabilidad y consistencia del sistema. El sistema experto es capaz de diagnosticar ocho (8) plagas y nueve (9) enfermedades de los cultivos de berenjena, por medio de dos módulos de inferencia, donde se tienen en cuenta los daños presentes en las diferentes partes de la planta, así como la presencia de algún tipo de insecto. Adicionalmente se debe ingresar la estación climática, con el fin de dar un diagnóstico más certero

    Zettawatt-Exawatt Lasers and Their Applications in Ultrastrong-Field Physics: High Energy Front

    Get PDF
    Since its birth, the laser has been extraordinarily effective in the study and applications of laser-matter interaction at the atomic and molecular level and in the nonlinear optics of the bound electron. In its early life, the laser was associated with the physics of electron volts and of the chemical bond. Over the past fifteen years, however, we have seen a surge in our ability to produce high intensities, five to six orders of magnitude higher than was possible before. At these intensities, particles, electrons and protons, acquire kinetic energy in the mega-electron-volt range through interaction with intense laser fields. This opens a new age for the laser, the age of nonlinear relativistic optics coupling even with nuclear physics. We suggest a path to reach an extremely high-intensity level 10262810^{26-28} W/cm2^2 in the coming decade, much beyond the current and near future intensity regime 102310^{23} W/cm2^2, taking advantage of the megajoule laser facilities. Such a laser at extreme high intensity could accelerate particles to frontiers of high energy, tera-electron-volt and peta-electron-volt, and would become a tool of fundamental physics encompassing particle physics, gravitational physics, nonlinear field theory, ultrahigh-pressure physics, astrophysics, and cosmology. We focus our attention on high-energy applications in particular and the possibility of merged reinforcement of high-energy physics and ultraintense laser.Comment: 25 pages. 1 figur
    corecore