61 research outputs found

    Identification of the amino acids in the major histocompatibility complex class II region of scottish blackface sheep that are associated with resistance to nematode infection

    Get PDF
    Lambs with the Major Histocompatibility Complex DRB1*1101 allele have been shown to produce fewer nematode eggs following natural and deliberate infection. These sheep also possess fewer adult Teladorsagia circumcincta than sheep with alternative alleles at the DRB1 locus. However, it is unclear if this allele is responsible for the reduced egg counts or merely acts as a marker for a linked gene. This study defined the MHC haplotypes in a population of naturally infected Scottish Blackface sheep by PCR amplification and sequencing, and examined the associations between MHC haplotypes and faecal egg counts by generalised linear mixed modelling. The DRB1*1101 allele occurred predominately on one haplotype and a comparison of haplotypes indicated that the causal mutation or mutations occurred in or around this locus. Additional comparisons with another resistant haplotype indicated that mutations in or around the DQB2*GU191460 allele were also responsible for resistance to nematode infections. Further analyses identified six amino acid substitutions in the antigen binding site of DRB1*1101 that were significantly associated with reductions in the numbers of adult T. circumcincta

    Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development

    Get PDF
    Arachnomelia is a monogenic recessive defect of skeletal development in cattle. The causative mutation was previously mapped to a ∼7 Mb interval on chromosome 5. Here we show that array-based sequence capture and massively parallel sequencing technology, combined with the typical family structure in livestock populations, facilitates the identification of the causative mutation. We re-sequenced the entire critical interval in a healthy partially inbred cow carrying one copy of the critical chromosome segment in its ancestral state and one copy of the same segment with the arachnomelia mutation, and we detected a single heterozygous position. The genetic makeup of several partially inbred cattle provides extremely strong support for the causality of this mutation. The mutation represents a single base insertion leading to a premature stop codon in the coding sequence of the SUOX gene and is perfectly associated with the arachnomelia phenotype. Our findings suggest an important role for sulfite oxidase in bone development

    A dual fluorescent multiprobe assay for prion protein genotyping in sheep

    Get PDF
    BACKGROUND: Scrapie and BSE belong to a group of fatal, transmissible, neurodegenerative diseases called TSE. In order to minimize the risk of natural scrapie and presumed natural BSE in sheep, breeding programmes towards TSE resistance are conducted in many countries based on resistance rendering PRNP polymorphisms at codons 136 (A/V), 154 (R/H) and 171 (R/H/Q). Therefore, a reliable, fast and cost-effective method for routine PRNP genotyping in sheep, applicable in standard equipped molecular genetic laboratories, will be a vital instrument to fulfill the need of genotyping hundreds or thousands of sheep. METHODS: A dual fluorescent multiprobe assay consisting of 2 closed tube PCR reactions containing respectively 4 and 3 dual-labelled fluorescent ASO probes for the detection in real-time of the 7 allelic variants of sheep PRNP mentioned above. RESULTS: The assay is succesfully performed using unpurified DNA as a template for PCR, without any post-PCR manipulations and with semi-automatic determination of the PRNP genotypes. The performance of the assay was confirmed via PCR-RFLP and sequencing in a cross-validation study with 50 sheep. CONCLUSIONS: We report the development and validation of a robust, reliable and reproducible method for PRNP genotyping of a few to many sheep samples in a fast, simple and cost-effective way, applicable in standard equipped molecular genetic laboratories. The described primer/probe design strategy can also be applied for the detection of other polymorphisms or disease causing mutations

    Analysis of multiple single nucleotide polymorphisms closely positioned in the ovine PRNP gene using linear fluorescent probes and melting curve analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance and susceptibility to scrapie has been associated with single nucleotide polymorphisms located within codons 136, 154 and 171 of the ovine prion protein gene (<it>PRNP</it>). Dual-labelled HyBeacon probes were developed to analyse single and clustered polymorphisms within these and neighbouring codons.</p> <p>Methods</p> <p>Extracted DNAs and unpurified blood samples were genotyped with respect to polymorphisms in <it>PRNP </it>codons 136, 141, 154 and 171. PCR amplicons were investigated using a LightTyper instrument, measuring the stability of probe/target hybridisation through peak melting temperatures and determining the sequence of nucleotides at polymorphic sites.</p> <p>Results</p> <p>The performance of HyBeacon assays was evaluated in a validation study comparing genotypes with those obtained using a primer extension assay (Sequenom MassEXTEND) analysed on a MALDI-ToF mass spectrometer. Over 12,000 sheep samples were successfully genotyped, reliably detecting A<sup>136</sup>, V<sup>136</sup>, T<sup>136</sup>, T<sup>137</sup>, L<sup>141</sup>, F<sup>141 </sup>R<sup>154</sup>, H<sup>154</sup>, L<sup>168</sup>, R<sup>171</sup>, Q<sup>171</sup>, H<sup>171 </sup>and K<sup>171 </sup>sequence variants using only 4 HyBeacon probes.</p> <p>Conclusion</p> <p>HyBeacon assays provide an extremely robust and accurate method for the analysis of single and clustered <it>PRNP </it>polymorphisms in a high-throughput format. The flexibility of the diagnostic tests ensures that samples are correctly genotyped even in the presence of additional sequence variations that flank the polymorphisms of interest. Such sequence variations may also be neutralised using universal bases such as 5-nitroindole if required.</p

    Novel Quantitative Real-Time LCR for the Sensitive Detection of SNP Frequencies in Pooled DNA: Method Development, Evaluation and Application

    Get PDF
    BACKGROUND: Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. METHODS: The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. CONCLUSIONS: The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. SIGNIFICANCE: The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food

    Variation in the Ovine Abomasal Lymph Node Transcriptome between Breeds Known to Differ in Resistance to the Gastrointestinal Nematode

    Get PDF
    Texel lambs are known to be more resistant to gastrointestinal nematode (GIN) infection than Suffolk lambs, with a greater ability to limit infection. The objectives of this study were to: 1) profile the whole transcriptome of abomasal lymph node tissue of GIN-free Texel and Suffolk lambs; 2) identify differentially expressed genes and characterize the immune-related biological pathways and networks associated with these genes. Abomasal lymph nodes were collected from Texel (n = 6) and Suffolk (n = 4) lambs aged 19 weeks that had been GIN-free since 6 weeks of age. Whole transcriptome profiling was performed using RNA-seq on the Illumina platform. At the time of conducting this study, a well annotated Ovine genome was not available and hence the sequence reads were aligned with the Bovine (UMD3.1) genome. Identification of differentially expressed genes was followed by pathway and network analysis. The Suffolk breed accounted for significantly more of the differentially expressed genes, (276 more highly expressed in Suffolk v 162 in Texel; P < 0.001). The four most significant differentially expressed pathways were all related to immunity and were classified as: Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses, Activation of IRF by Cytosolic Pattern Recognition Receptors, Role of RIG-I-like Receptors in Antiviral Innate Immunity, and Interferon Signaling. Of significance is the fact that all of these four pathways were more highly expressed in the Suffolk. These data suggest that in a GIN-free environment, Suffolk lambs have a more active immune profile relative to the Texel: this immune profile may contribute to the poorer efficiency of response to a GIN challenge in the Suffolk breed compared to the Texel breed

    The genetic architecture of the MHC class II region in British Texel sheep

    Get PDF
    Understanding the structure of the major histocompatibility complex, especially the number and frequency of alleles, loci and haplotypes, is crucial for efficient investigation of the way in which the MHC influences susceptibility to disease. Nematode infection is one of the most important diseases suffered by sheep, and the class II region has been repeatedly associated with differences in susceptibility and resistance to infection. Texel sheep are widely used in many different countries and are relatively resistant to infection. This study determined the number and frequency of MHC class II genes in a small flock of Texel sheep. There were 18 alleles at DRB1, 9 alleles at DQA1, 13 alleles at DQB1, 8 alleles at DQA2 and 16 alleles at DQB2. Several haplotypes had no detectable gene products at DQA1, DQB1 or DQB2, and these were defined as null alleles. Despite the large numbers of alleles, there were only 21 distinct haplotypes in the population. The relatively small number of observed haplotypes will simplify finding disease associations because common haplotypes provide more statistical power but complicate the discrimination of causative mutations from linked marker loci

    Transcriptional profiling of the ovine abomasal lymph node reveals a role for timing of the immune response in gastrointestinal nematode resistance

    Get PDF
    Gastrointestinal nematodes are a serious cause of morbidity and mortality in grazing ruminants. The major ovine defence mechanism is acquired immunity, with protective immunity developing over time in response to infection. Nematode resistance varies both within and between breeds and is moderately heritable. A detailed understanding of the genes and mechanisms involved in protective immunity, and the factors that regulate this response, is required to aid both future breeding strategies and the development of effective and sustainable nematode control methods. The aim of this study was to compare the abomasal lymph node transcriptome of resistant and susceptible lambs in order to determine biological processes differentially expressed between resistant and susceptible individuals. Scottish Blackface lambs, with divergent phenotypes for resistance, were challenged with 30,000 Teladorsagia circumcincta larvae (L3), and abomasal lymph nodes recovered at 7 and 14 days post-infection (dpi). High-throughput sequencing of cDNA from the abomasal lymph node was used to quantitatively sample the transcriptome with an average of 32 million reads per sample. A total of 194 and 144 genes were differentially expressed between resistant and susceptible lambs at 7 and 14 dpi respectively. Differentially expressed networks and biological processes were identified using Ingenuity Pathway Analysis. Genes involved in the inflammatory response, attraction of T lymphocytes and binding of leukocytes were more highly expressed in resistant animals at 7 dpi and in susceptible animals at 14 dpi indicating that resistant animals respond to infection earlier than susceptible animals. Twenty-four Single Nucleotide Polymorphisms (SNP) within 11 differentially expressed genes, were tested for association with gastrointestinal nematode resistance in the Scottish Blackface lambs. Four SNP, in 2 genes (SLC30A2 and ALB), were suggestively associated with faecal egg count. In conclusion, a large number of genes were differentially expressed in the abomasal lymph node of resistant and susceptible lambs responding to gastrointestinal nematode challenge. Resistant Scottish Blackface lambs appear to generate an earlier immune response to T. circumcincta. In susceptible lambs this response appears to be delayed. SNP in 2 differentially expressed genes were suggestively associated with faecal egg count indicating that differentially expressed genes may be considered candidate loci for mediating nematode resistance
    corecore