217 research outputs found

    Assessing the ecological soundness of organic and conventional agriculture by means of life cycle assessment (LCA) - a case study of leek production

    Get PDF
    Purpose – Sustainable agriculture implies the ability of agro-ecosystems to remain productive in the long-term. It is not easy to point out unambiguously whether or not current production systems meet this sustainability demand. A priori thinking would suggest that organic crops are environmentally favourable, but may ignore the effect of reduced productivity, which shifts the potential impact to other parts of the food provision system. The purpose of this paper is to assess the ecological sustainability of conventional and organic leek production by means of life cycle assessment (LCA). Design/methodology/approach – A cradle-to-farm gate LCA is applied, based on real farm data from two research centres. For a consistent comparison, two functional units (FU) were defined: 1ha and 1?kg of leek production. Findings – Assessed on an area basis, organic farming shows a more favourable environmental profile. These overall benefits are strongly reduced when the lower yields are taken into account. Related to organic farming it is therefore important that solutions are found to substantially increase the yields without increasing the environmental burden. Related to conventional farming, important potential for environmental improvements are in optimising the farm nutrient flows, reducing pesticide use and increasing its self-supporting capacity. Research limitations/implications – The research is a cradle-to-farm gate LCA, future research can be expanded to comprise all phases from cradle-to-grave to get an idea of the total sustainability of our present food consumption patterns. The research is also limited to the case of leek production. Future research can apply the methodology to other crops. Originality/value – To date, there is still lack of clear evidence of the added value of organic farming compared to conventional farming on environmental basis. Few studies have compared organic and conventional food production by means of LCA. This paper addresses these issues

    Post-Marketing Surveillance of CAR-T-Cell Therapies: Analysis of the FDA Adverse Event Reporting System (FAERS) Database

    Get PDF
    Introduction As chimeric antigen receptor T-cell therapies are becoming increasingly available in the armamentarium of the hematologist, there is an emerging need to monitor post-marketing safety. Objective We aimed to better characterize their safety profile by focusing on cytokine release syndrome and identifying emerging signals. Methods We queried the US Food and Drug Administration Adverse Event Reporting System (October 2017-September 2020) to analyze suspected adverse drug reactions to tisagenlecleucel (tisa-cel) and axicabtagene ciloleucel (axi-cel). Disproportionality analyses (reporting odds ratio) were performed by comparing chimeric antigen receptor T-cell therapies with (a) all other drugs (reference group 1) and (b) other onco-hematological drugs with a similar indication, irrespective of age (reference group 2), or (c) restricted to adults (reference group 3). Notoriety was assessed through package inserts and risk management plans. Adverse drug reaction time to onset and cytokine release syndrome features were investigated. Results Overall, 3225 reports (1793 axi-cel; 1433 tisa-cel) were identified. The reported toxicities were mainly: cytokine release syndrome (52.2%), febrile disorders (27.7%), and neurotoxicity (27.2%). Cytokine release syndrome and neurotoxicity were often co-reported and 75% of the events occurred in the first 10 days. Disproportionalities confirmed known adverse drug reactions and showed unexpected associations: for example, axi-cel with cardiomyopathies (reporting odds ratio = 2.3; 95% confidence interval 1.2-4.4) and gastrointestinal perforations (2.9; 1.2-7.3), tisa-cel with hepatotoxicity (2.5; 1.1-5.7) and pupil disorders (15.3; 6-39.1). Conclusions Our study confirms the well-known adverse drug reactions and detects potentially emerging safety issues specific for each chimeric antigen receptor T-cell therapy, also providing insights into a stronger role for tisa-cel in inducing some immunodeficiency-related events (e.g., hypogammaglobulinemia, infections) and coagulopathies, and for axi-cel in neurotoxicity

    Vemurafenib treatment of pleomorphic xanthoastrocytoma in a child with Down syndrome

    Get PDF
    Brain tumors are the most common solid neoplasms of childhood, but they are very rarely reported in children with Down Syndrome (DS), who develop more commonly different types of malignancies. In particular, we hereby report the case of an 8-years-old child with DS that presented to our attention for neurological and endocrinological issues. Brain imaging revealed the presence of a mass that was partially resected revealing a histological diagnosis of Pleomorphic Xanthoastrocytoma (PXA), a rare WHO grade II tumor extending from the diencephalic region into the surrounding brain tissue. These tumors can harbor the BRAF mutation p.V600E, targetable by the specific inhibitor Vemurafenib. After confirming the presence of the mutation in the tumor, the patient was treated with Vemurafenib. The treatment proved to be effective, leading to a partial response and a stabilization of the disease. Usually, in patients with DS a reduction of the dose of chemotherapeutic drugs is necessary. Vemurafenib was instead well-tolerated as the only observed adverse effect was grade I skin toxicity. This is, to our knowledge, the first case of a PXA reported in a child with DS and the first DS patient treated with Vemurafenib

    GD2 redirected CAR T and activated NK-cell-mediated secretion of IFNγovercomes MYCN-dependent IDO1 inhibition, contributing to neuroblastoma cell immune escape

    Get PDF
    Immune escape mechanisms employed by neuroblastoma (NB) cells include secretion of immunosuppressive factors disrupting effective antitumor immunity. The use of cellular therapy to treat solid tumors needs to be implemented. Killing activity of anti-GD2 Chimeric Antigen Receptor (CAR) T or natural killer (NK) cells against target NB cells was assessed through coculture experiments and quantified by FACS analysis. ELISA assay was used to quantify interferon-gamma (IFN gamma) secreted by NK and CAR T cells. Real Time PCR and Western Blot were performed to analyze gene and protein levels modifications. Transcriptional study was performed by chromatin immunoprecipitation and luciferase reporter assays on experiments of mutagenesis on the promoter sequence. NB tissue sample were analyzed by IHC and Real Time PCR to perform correlation study. We demonstrate that Indoleamine-pyrrole 2,3-dioxygenase1 (IDO1), due to its ability to convert tryptophan into kynurenines, is involved in NB resistance to activity of immune cells. In NB, IDO1 is able to inhibit the anti-tumor effect displayed by of both anti-GD2 CAR (GD2.CAR) T-cell and NK cells, mainly by impairing their IFN gamma production. Furthermore, inhibition of MYCN expression in NB results into accumulation of IDO1 and consequently of kynurenines, which negatively affect the immune surveillance. Inverse correlation between IDO1 and MYCN expression has been observed in a wide cohort of NB samples. This finding was supported by the identification of a transcriptional repressive role of MYCN on IDO1 promoter. The evidence of IDO1 involvement in NB immune escape and its ability to impair NK and GD2.CAR T-cell activity contribute to clarify one of the possible mechanisms responsible for the limited efficacy of these immunotherapeutic approaches. A combined therapy of NK or GD2.CAR T-cells with IDO1 inhibitors, a class of compounds already in phase I/II clinical studies, could represent a new and still unexplored strategy capable to improve long-term efficacy of these immunotherapeutic approaches

    Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma

    Get PDF
    Chimeric antigen receptor (CAR) T-cell therapy has been shown to be dramatically effective in the treatment of B-cell malignancies. However, there are still substantial obstacles to overcome, before similar responses can be achieved in patients with solid tumors. We evaluated both in vitro and in a preclinical murine model the efficacy of different 2nd and 3rd generation CAR constructs targeting GD2, a disial-ganglioside expressed on the surface of neuroblastoma (NB) tumor cells. In order to address potential safety concerns regarding clinical application, an inducible safety switch, namely inducible Caspase-9 (iC9), was also included in the vector constructs. Our data indicate that a 3rd generation CAR incorporating CD28.4-1BB costimulatory domains is associated with improved anti-tumor efficacy as compared with a CAR incorporating the combination of CD28.OX40 domains. We demonstrate that the choice of 4-1BB signaling results into significant amelioration of several CAR T-cell characteristics, including: 1) T-cell exhaustion, 2) basal T-cell activation, 3) in vivo tumor control and 4) T-cell persistence. The fine-tuning of T-cell culture conditions obtained using IL7 and IL15 was found to be synergic with the CAR.GD2 design in increasing the anti-tumor activity of CAR T cells. We also demonstrate that activation of the suicide gene iC9, included in our construct without significantly impairing neither CAR expression nor anti-tumor activity, leads to a prompt induction of apoptosis of GD2.CAR T cells. Altogether, these findings are instrumental in optimizing the function of CAR T-cell products to be employed in the treatment of children with NB

    Unrelated donor vs HLA-haploidentical a/b T-cell- and B-cell-depleted HSCT in children with acute leukemia

    Get PDF
    Traditionally, hematopoietic stem cell transplantation (HSCT) from both HLA-matched related and unrelated donors (UD) has been used for treating children with acute leukemia (AL) in need of an allograft. Recently, HLA-haploidentical HSCT after ab T-cell/B-cell depletion (abhaplo-HSCT) was shown to be effective in single-center studies. Here, we report the first multicenter retrospective analysis of 127 matched UD (MUD), 118 mismatched UD (MMUD), and 98 abhaplo-HSCT recipients, transplanted between 2010 and 2015, in 13 Italian centers. All these AL children were transplanted in morphological remission after a myeloablative conditioning regimen. Graft failure occurred in 2% each of UD-HSCT and abhaplo-HSCT groups. In MUD vs MMUD-HSCT recipients, the cumulative incidence of grade II to IV and grade III to IV acute graft-versus-host disease (GVHD) was 35% vs 44% and 6% vs 18%, respectively, compared with 16% and 0% in abhaplo-HSCT recipients (P < .001). Children treated with abhaplo-HSCT also had a significantly lower incidence of overall and extensive chronic GVHD (P < .01). Eight (6%) MUD, 32 (28%) MMUD, and 9 (9%) abhaplo-HSCT patients died of transplant-related complications. With a median follow-up of 3.3 years, the 5-year probability of leukemia-free survival in the 3 groups was 67%, 55%, and 62%, respectively. In the 3 groups, chronic GVHD-free/relapse-free (GRFS) probability of survival was 61%, 34%, and 58%, respectively (P < .001). When compared with patients given MMUD-HSCT, abhaplo-HSCT recipients had a lower cumulative incidence of nonrelapse mortality and a better GRFS (P < .001). These data indicate that abhaplo-HSCT is a suitable therapeutic option for children with AL in need of transplantation, especially when an allele-matched UD is not available

    The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms

    Get PDF
    : The mitogen-activated protein kinase (MAPK) and PI3K pathways are regulated by extensive crosstalk, occurring at different levels. In tumors, transactivation of the alternate pathway is a frequent "escape" mechanism, suggesting that combined inhibition of both pathways may achieve synergistic antitumor activity. Here we show that, in the M14 melanoma model, simultaneous inhibition of both MEK and mammalian target of rapamycin (mTOR) achieves synergistic effects at suboptimal concentrations, but becomes frankly antagonistic in the presence of relatively high concentrations of MEK inhibitors. This observation led to the identification of a novel crosstalk mechanism, by which either pharmacologic or genetic inhibition of constitutive MEK signaling restores phosphatase and tensin homolog (PTEN) expression, both in vitro and in vivo, and inhibits downstream signaling through AKT and mTOR, thus bypassing the need for double pathway blockade. This appears to be a general regulatory mechanism and is mediated by multiple mechanisms, such as MAPK-dependent c-Jun and miR-25 regulation. Finally, PTEN upregulation appears to be a major effector of MEK inhibitors' antitumor activity, as cancer cells in which PTEN is inactivated are consistently more resistant to the growth inhibitory and anti-angiogenic effects of MEK blockade
    • …
    corecore