461 research outputs found
Performance of a cryogenic system prototype for the XENON1T Detector
We have developed an efficient cryogenic system with heat exchange and
associated gas purification system, as a prototype for the XENON1T experiment.
The XENON1T detector will use about 3 ton of liquid xenon (LXe) at a
temperature of 175K as target and detection medium for a dark matter search. In
this paper we report results on the cryogenic system performance focusing on
the dynamics of the gas circulation-purification through a heated getter, at
flow rates above 50 Standard Liter per Minute (SLPM). A maximum flow of 114
SLPM has been achieved, and using two heat exchangers in parallel, a heat
exchange efficiency better than 96% has been measured
Explosive events - swirling transition region jets
In this paper, we extend our earlier work to provide additional evidence for
an alternative scenario to explain the nature of so-called `explosive events'.
The bi-directed, fast Doppler motion of explosive events observed
spectroscopically in the transition region emission is classically interpreted
as a pair of bidirectional jets moving upward and downward from a reconnection
site. We discuss the problems of such a model. In our previous work, we focused
basically on the discrepancy of fast Doppler motion without detectable motion
in the image plane. We now suggest an alternative scenario for the explosive
events, based on our observations of spectral line tilts and bifurcated
structure in some events. Both features are indicative of rotational motion in
narrow structures. We explain the bifurcation as the result of rotation of
hollow cylindrical structures and demonstrate that such a sheath model can also
be applied to explain the nature of the puzzling `explosive events'. We find
that the spectral tilt, the lack of apparent motion, the bifurcation, and a
rapidly growing number of direct observations support an alternative scenario
of linear, spicular-sized jets with a strong spinning motion.Comment: 9 pages, 3 figures, accepted for publication in Solar Physic
Laser-plasma harmonics with high-contrast pulses and designed prepulses
One aspect of the complexity of mid- and high-harmonic generation in high-intensity laser-plasma interactions is that nonlinear hydrodynamics is virtually always folded together with the nonlinear optical conversion process. We have partly dissected this issue in picosecond and subpicosecond interactions with preformed plasma gradients, imaging and spectrally resolving low- and mid-order harmonics. We describe spatial breakup of the picosecond beam in preformed plasmas, concomitant broadening and breakup of the harmonic spectrum, presumably through self-phase modulation, together with data on the sensitivity of harmonics production efficiency to the gradient or extent of preformed plasma. Lastly, we show preliminary data of regular Stokes-like and anti-Stokes-like satellites to the harmonics, accompanied by modification of the forward-scattered beam. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87448/2/342_1.pd
Comment on "On the subtleties of searching for dark matter with liquid xenon detectors"
In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that
XENON100's upper limits on spin-independent WIMP-nucleon cross sections for
WIMP masses below 10 GeV "may be understated by one order of magnitude or
more". Having performed a similar, though more detailed analysis prior to the
submission of our new result (arXiv:1207.5988), we do not confirm these
findings. We point out the rationale for not considering the described effect
in our final analysis and list several potential problems with his study.Comment: 3 pages, no figure
Search for Event Rate Modulation in XENON100 Electronic Recoil Data
We have searched for periodic variations of the electronic recoil event rate
in the (2-6) keV energy range recorded between February 2011 and March 2012
with the XENON100 detector, adding up to 224.6 live days in total. Following a
detailed study to establish the stability of the detector and its background
contributions during this run, we performed an un-binned profile likelihood
analysis to identify any periodicity up to 500 days. We find a global
significance of less than 1 sigma for all periods suggesting no statistically
significant modulation in the data. While the local significance for an annual
modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and
the phase of the modulation disfavor a dark matter interpretation. The
DAMA/LIBRA annual modulation interpreted as a dark matter signature with
axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.Comment: 6 pages, 4 figure
Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment
The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410
has been developed by Hamamatsu for dark matter direct detection experiments
using liquid xenon as the target material. We present the results from the
joint effort between the XENON collaboration and the Hamamatsu company to
produce a highly radio-pure photosensor (version R11410-21) for the XENON1T
dark matter experiment. After introducing the photosensor and its components,
we show the methods and results of the radioactive contamination measurements
of the individual materials employed in the photomultiplier production. We then
discuss the adopted strategies to reduce the radioactivity of the various PMT
versions. Finally, we detail the results from screening 216 tubes with
ultra-low background germanium detectors, as well as their implications for the
expected electronic and nuclear recoil background of the XENON1T experiment.Comment: 10 pages, 5 figure
Search for Two-Neutrino Double Electron Capture of Xe with XENON100
Two-neutrino double electron capture is a rare nuclear decay where two
electrons are simultaneously captured from the atomic shell. For Xe
this process has not yet been observed and its detection would provide a new
reference for nuclear matrix element calculations. We have conducted a search
for two-neutrino double electron capture from the K-shell of Xe using
7636 kgd of data from the XENON100 dark matter detector. Using a
Bayesian analysis we observed no significant excess above background, leading
to a lower 90 % credibility limit on the half-life
yr. We also evaluated the sensitivity of the XENON1T experiment, which is
currently being commissioned, and find a sensitivity of
yr after an exposure of 2 tyr.Comment: 6 pages, 4 figure
Strong-coupling expansion and effective hamiltonians
When looking for analytical approaches to treat frustrated quantum magnets,
it is often very useful to start from a limit where the ground state is highly
degenerate. This chapter discusses several ways of deriving {effective
Hamiltonians} around such limits, starting from standard {degenerate
perturbation theory} and proceeding to modern approaches more appropriate for
the derivation of high-order effective Hamiltonians, such as the perturbative
continuous unitary transformations or contractor renormalization. In the course
of this exposition, a number of examples taken from the recent literature are
discussed, including frustrated ladders and other dimer-based Heisenberg models
in a field, as well as the mapping between frustrated Ising models in a
transverse field and quantum dimer models.Comment: To appear as a chapter in "Highly Frustrated Magnetism", Eds. C.
Lacroix, P. Mendels, F. Mil
Removing krypton from xenon by cryogenic distillation to the ppq level
The XENON1T experiment aims for the direct detection of dark matter in a
cryostat filled with 3.3 tons of liquid xenon. In order to achieve the desired
sensitivity, the background induced by radioactive decays inside the detector
has to be sufficiently low. One major contributor is the -emitter
Kr which is an intrinsic contamination of the xenon. For the XENON1T
experiment a concentration of natural krypton in xenon Kr/Xe < 200
ppq (parts per quadrillion, 1 ppq = 10 mol/mol) is required. In this
work, the design of a novel cryogenic distillation column using the common
McCabe-Thiele approach is described. The system demonstrated a krypton
reduction factor of 6.410 with thermodynamic stability at process
speeds above 3 kg/h. The resulting concentration of Kr/Xe < 26 ppq
is the lowest ever achieved, almost one order of magnitude below the
requirements for XENON1T and even sufficient for future dark matter experiments
using liquid xenon, such as XENONnT and DARWIN
A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila
Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol
- …