8 research outputs found

    Regulatory T cells from patients with end-stage organ disease can be isolated, expanded and cryopreserved according good manufacturing practice improving their function

    Get PDF
    Background Here, we isolated, expanded and functionally characterized regulatory T cells (Tregs) from patients with end stage kidney and liver disease, waiting for kidney/liver transplantation (KT/LT), with the aim to establish a suitable method to obtain large numbers of immunomodulatory cells for adoptive immunotherapy post-transplantation. Methods We first established a preclinical protocol for expansion/isolation of Tregs from peripheral blood of LT/KT patients. We then scaled up and optimized such protocol according to good manufacturing practice (GMP) to obtain high numbers of purified Tregs which were phenotypically and functionally characterized in vitro and in vivo in a xenogeneic acute graft-versus-host disease (aGVHD) mouse model. Specifically, immunodepressed mice (NOD-SCID-gamma KO mice) received human effector T cells with or without GMP-produced Tregs to prevent the onset of xenogeneic GVHD. Results Our small scale Treg isolation/expansion protocol generated functional Tregs. Interestingly, cryopreservation/thawing did not impair phenotype/function and DNA methylation pattern of FOXP3 gene of the expanded Tregs. Fully functional Tregs were also isolated/expanded from KT and LT patients according to GMP. In the mouse model, GMP Tregs from LT or KT patient proved to be safe and show a trend toward reduced lethality of acute GVHD. Conclusions These data demonstrate that expanded/thawed GMP-Tregs from patients with end-stage organ disease are fully functional in vitro. Moreover, their infusion is safe and results in a trend toward reduced lethality of acute GVHD in vivo, further supporting Tregs-based adoptive immunotherapy in solid organ transplantation

    Tips and Tricks for Validation of Quality Control Analytical Methods in Good Manufacturing Practice Mesenchymal Stromal Cell Production

    No full text
    Mesenchymal stromal cells (MSC) for cellular therapy in European Union are classified as advanced therapy medicinal products (ATMPs), and their production must fulfill the requirements of Good Manufacturing Practice (GMP) rules. Despite their classification as medicinal products is already well recognized, there is still a lack of information and indications to validate methods and to adapt the noncompendial and compendial methods to these peculiar biological products with intrinsic characteristics that differentiate them from classic synthetic or biologic drugs. In the present paper, we present the results of the validation studies performed in the context of MSC development as ATMPs for clinical experimental use. Specifically, we describe the validation policies followed for sterility testing, endotoxins, adventitious viruses, cell count, and immunophenotyping. Our work demonstrates that it is possible to fully validate analytical methods also for ATMPs and that a risk-based approach can fill the gap between the prescription of the available guidelines shaped on traditional medicinal products and the peculiar characteristics of these novel and extremely promising new drugs

    Microtubule defects in mesenchymal stromal cells distinguish patients with Progressive Supranuclear Palsy

    No full text
    Abstract Progressive Supranuclear Palsy (PSP) is a rare neurodegenerative disease whose etiopathogenesis remains elusive. The intraneuronal accumulation of hyperphosphorylated Tau, a pivotal protein in regulating microtubules (MT), leads to include PSP into tauopathies. Pathological hallmarks are well known in neural cells but no word yet if PSP‐linked dysfunctions occur also in other cell types. We focused on bone marrow mesenchymal stromal cells (MSCs) that have recently gained attention for therapeutic interventions due to their anti‐inflammatory, antiapoptotic and trophic properties. Here, we aimed to investigate MSCs biology and to disclose if any disease‐linked defect occurs in this non‐neuronal compartment. First, we found that cells obtained from patients showed altered morphology and growth. Next, Western blotting analysis unravelled the imbalance in α‐tubulin post‐translational modifications and in MT stability. Interestingly, MT mass is significantly decreased in patient cells at baseline and differently changes overtime compared to controls, suggesting their inability to efficiently remodel MT cytoskeleton during ageing in culture. Thus, our results provide the first evidence that defects in MT regulation and stability occur and are detectable in a non‐neuronal compartment in patients with PSP. We suggest that MSCs could be a novel model system for unravelling cellular processes implicated in this neurodegenerative disorder
    corecore