905 research outputs found

    AMP Expression in Energetic Hybrid D. melanogaster Infected With P. rettgeri

    Get PDF
    The purpose of this experiment was to investigate immune function and energy metabolism, particularly the levels of antimicrobial peptides produced in Drosophila energetically compromised genotypes. This will provide the ability to investigate energetics of immunity without changing diet. Flies were infected with the bacteria P. rettgeri and the resulting immune response was investigated. Females did not mount as effective an immune response as males. All flies exhibited decreased survivorship from infection. Control flies survived at higher levels and showed no mitochondrial:nuclear interaction

    Genetic parameter estimation and gene network derivation for fatty acid traits in Angus beef cattle

    Get PDF
    The fatty acid profile of beef is a complex trait that affects eating quality, healthfulness attributes for the consumer, and carcass characteristics. Longissimus muscle samples were obtained from 1,833 Angus cattle to determine the intramuscular fatty acid composition for 31 lipids and lipid classes from triacylglycerol (TAG) and phospholipid (PL) fractions. Restricted maximum likelihood methods combined with pedigree data were used to estimate variance components. Heritability estimates ranged from 0 to 0.63 for the major classes of fatty acids. Heritability estimates differed between the TAG and PL fractions, with higher estimates for TAG up to 0.64 and lower estimates for PL that ranged up to 0.14. Phenotypic and genotypic correlations between pedigrees among individual fatty acids were determined for the TAG fraction as well as among carcass traits including ribeye area (REA), numerical marbling score (MARB), yield grade (YG), ether fat (EFAT), and Warner-Bratzler shear force value (WBSF). Strong negative or positive genetic correlations were observed between pedigrees among individual fatty acids in the TAG fraction, which ranged from -0.99 to 0.97 (P < 0.05). Moderate correlations between carcass traits and fatty acids from the TAG fraction ranged from -0.43 to 0.32 (P < 0.05). These results indicate that certain fatty acids prominent in beef tissues show significant genetic variation as well as genetic relationships to carcass traits. An Illumina 54k bovine SNPchip was used to determine phenotypic measures of fatty acid profile from the triacylglycerol and phospholipid fraction of longissimus muscle. Pedigree information, and genotypes were utilized to derive an annotated gene network underlying the fatty acid composition. The Bayes-B statistical model was utilized to perform a genome wide association study to estimate effects between 53,234 SNP genotypes and 39 individual fatty acid phenotypes within each fraction (TAG or PL). Effects were estimated for 1-Mbp genomic windows as well as for 54k SNP genotypes. A correlation algorithm was used to illustrate correlated regions of the genome with a set of 1 Mbp windows explaining up to 34.55% of the genetic variation in both fatty acid fractions. Annotated gene network clusters were generated by utilizing a partial correlation and information theory algorithm (PCIT) in conjunction with network scoring and visualization software to analyze correlated SNPs across 39 fatty acid phenotypes to identify SNPs of functional significance. Significantly overrepresented pathways implicated in fatty acid metabolism through network analysis included fatty acid synthesis, glycerol-phospholipid metabolism, and cell-to-cell adhesion and trafficking. A network analysis using partial correlations and annotation of significant SNPs yields functional information about the genetic mechanisms underlying the fatty acid profile of beef

    Mitochondrial Dysfunction and Infection Generate Immunity–Fecundity Tradeoffs in \u3ci\u3eDrosophila\u3c/i\u3e

    Get PDF
    Physiological responses to short-term environmental stressors, such as infection, can have long-term consequences for fitness, particularly if the responses are inappropriate or nutrient resources are limited. Genetic variation affecting energy acquisition, storage, and usage can limit cellular energy availability and may influence resourceallocation tradeoffs even when environmental nutrients are plentiful. Here, we utilized Drosophila mitochondrial– nuclear genotypes to test whether disrupted mitochondrial function interferes with nutrient-sensing pathways, and whether this disruption has consequences for tradeoffs between immunity and fecundity. We found that an energetically-compromised genotype was relatively resistant to rapamycin—a drug that targets nutrient-sensing pathways and mimics resource limitation. Dietary resource limitation decreased survival of energetically-compromised flies. Furthermore, survival of infection with a natural pathogen was decreased in this genotype, and females of this genotype experienced immunity–fecundity tradeoffs that were not evident in genotypic controls with normal energy metabolism. Together, these results suggest that this genotype may have little excess energetic capacity and fewer cellular nutrients, even when environmental nutrients are not limiting. Genetic variation in energy metabolism may therefore act to limit the resources available for allocation to life-history traits in ways that generate tradeoffs even when environmental resources are not limiting

    Deriving Gene Networks from SNP Associated with Triacylglycerol and Phospholipid Fatty Acid Fractions from Ribeyes of Angus Cattle

    Get PDF
    The fatty acid profile of beef is a complex trait that can benefit from gene-interaction network analysis to understand relationships among loci that contribute to phenotypic variation. Phenotypic measures of fatty acid profile from triacylglycerol and phospholipid fractions of longissimus muscle, pedigree information, and Illumina 54 k bovine SNP genotypes were utilized to derive an annotated gene network associated with fatty acid composition in 1,833 Angus beef cattle. The Bayes-B statistical model was utilized to perform a genome wide association study to estimate associations between 54 k SNP genotypes and 39 individual fatty acid phenotypes within each fraction. Posterior means of the effects were estimated for each of the 54 k SNP and for the collective effects of all the SNP in every 1-Mb genomic window in terms of the proportion of genetic variance explained by the window. Windows that explained the largest proportions of genetic variance for individual lipids were found in the triacylglycerol fraction. There was almost no overlap in the genomic regions explaining variance between the triacylglycerol and phospholipid fractions. Partial correlations were used to identify correlated regions of the genome for the set of largest 1 Mb windows that explained up to 35% genetic variation in either fatty acid fraction. SNP were allocated to windows based on the bovine UMD3.1 assembly. Gene network clusters were generated utilizing a partial correlation and information theory algorithm. Results were used in conjunction with network scoring and visualization software to analyze correlated SNP across 39 fatty acid phenotypes to identify SNP of significance. Significant pathways implicated in fatty acid metabolism through GO term enrichment analysis included homeostasis of number of cells, homeostatic process, coenzyme/cofactor activity, and immunoglobulin. These results suggest different metabolic pathways regulate the development of different types of lipids found in bovine muscle tissues. Network analysis using partial correlations and annotation of significant SNPs can yield information about the genetic architecture of complex traits

    Miniaturization optimized weapon killing power during the social stress of late pre-contact North America (AD 600-1600)

    Get PDF
    Before Europeans arrived to Eastern North America, prehistoric, indigenous peoples experienced a number of changes that culminated in the development of sedentary, maize agricultural lifeways of varying complexity. Inherent to these lifeways were several triggers of social stress including population nucleation and increase, intergroup conflict (warfare), and increased territoriality. Here, we examine whether this period of social stress co-varied with deadlier weaponry, specifically, the design of the most commonly found prehistoric archery component in late pre-contact North America: triangular stone arrow tips (TSAT). The examination of modern metal or carbon projectiles, arrows, and arrowheads has demonstrated that smaller arrow tips penetrate deeper into a target than do larger ones. We first experimentally confirm that this relationship applies to arrow tips made from stone hafted onto shafts made from wood. We then statistically assess a large sample (n = 742) of late pre-contact TSAT and show that these specimens are extraordinarily small. Thus, by miniaturizing their arrow tips, prehistoric people in Eastern North America optimized their projectile weaponry for maximum penetration and killing power in warfare and hunting. Finally, we verify that these functional advantages were selected across environmental and cultural boundaries. Thus, while we cannot and should not rule out stochastic, production economizing, or non-adaptive cultural processes as an explanation for TSAT, overall our results are consistent with the hypothesis that broad, socially stressful demographic changes in late pre-contact Eastern North America resulted in the miniaturization–and augmented lethality–of stone tools across the region

    Variance component estimates, phenotypic characterization, and genetic evaluation of bovine congestive heart failure in commercial feeder cattle

    Get PDF
    The increasing incidence of bovine congestive heart failure (BCHF) in feedlot cattle poses a significant challenge to the beef industry from economic loss, reduced performance, and reduced animal welfare attributed to cardiac insufficiency. Changes to cardiac morphology as well as abnormal pulmonary arterial pressure (PAP) in cattle of mostly Angus ancestry have been recently characterized. However, congestive heart failure affecting cattle late in the feeding period has been an increasing problem and tools are needed for the industry to address the rate of mortality in the feedlot for multiple breeds. At harvest, a population of 32,763 commercial fed cattle were phenotyped for cardiac morphology with associated production data collected from feedlot processing to harvest at a single feedlot and packing plant in the Pacific Northwest. A sub-population of 5,001 individuals were selected for low-pass genotyping to estimate variance components and genetic correlations between heart score and the production traits observed during the feeding period. At harvest, the incidence of a heart score of 4 or 5 in this population was approximately 4.14%, indicating a significant proportion of feeder cattle are at risk of cardiac mortality before harvest. Heart scores were also significantly and positively correlated with the percentage Angus ancestry observed by genomic breed percentage analysis. The heritability of heart score measured as a binary (scores 1 and 2 = 0, scores 4 and 5 = 1) trait was 0.356 in this population, which indicates development of a selection tool to reduce the risk of congestive heart failure as an EPD (expected progeny difference) is feasible. Genetic correlations of heart score with growth traits and feed intake were moderate and positive (0.289–0.460). Genetic correlations between heart score and backfat and marbling score were −0.120 and −0.108, respectively. Significant genetic correlation to traits of high economic importance in existing selection indexes explain the increased rate of congestive heart failure observed over time. These results indicate potential to implement heart score observed at harvest as a phenotype under selection in genetic evaluation in order to reduce feedlot mortality due to cardiac insufficiency and improve overall cardiopulmonary health in feeder cattle

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    National policy development for cotrimoxazole prophylaxis in Malawi, Uganda and Zambia: the relationship between Context, Evidence and Links

    Get PDF
    BACKGROUND: Several frameworks have been constructed to analyse the factors which influence and shape the uptake of evidence into policy processes in resource poor settings, yet empirical analyses of health policy making in these settings are relatively rare. National policy making for cotrimoxazole (trimethoprim-sulfamethoxazole) preventive therapy in developing countries offers a pertinent case for the application of a policy analysis lens. The provision of cotrimoxazole as a prophylaxis is an inexpensive and highly efficacious preventative intervention in HIV infected individuals, reducing both morbidity and mortality among adults and children with HIV/AIDS, yet evidence suggests that it has not been quickly or evenly scaled-up in resource poor settings. METHODS: Comparative analysis was conducted in Malawi, Uganda and Zambia, using the case study approach. We applied the 'RAPID' framework developed by the Overseas Development Institute (ODI), and conducted a total of 47 in-depth interviews across the three countries to examine the influence of context (including the influence of donor agencies), evidence (both local and international), and the links between researcher, policy makers and those seeking to influence the policy process. RESULTS: Each area of analysis was found to have an influence on the creation of national policy on cotrimoxazole preventive therapy (CPT) in all three countries. In relation to context, the following were found to be influential: government structures and their focus, donor interest and involvement, healthcare infrastructure and other uses of cotrimoxazole and related drugs in the country. In terms of the nature of the evidence, we found that how policy makers perceived the strength of evidence behind international recommendations was crucial (if evidence was considered weak then the recommendations were rejected). Further, local operational research results seem to have been taken up more quickly, while randomised controlled trials (the gold standard of clinical research) was not necessarily translated into policy so swiftly. Finally the links between different research and policy actors were of critical importance, with overlaps between researcher and policy maker networks crucial to facilitate knowledge transfer. Within these networks, in each country the policy development process relied on a powerful policy entrepreneur who helped get cotrimoxazole preventive therapy onto the policy agenda. CONCLUSIONS: This analysis underscores the importance of considering national level variables in the explanation of the uptake of evidence into national policy settings, and recognising how local policy makers interpret international evidence. Local priorities, the ways in which evidence was interpreted, and the nature of the links between policy makers and researchers could either drive or stall the policy process. Developing the understanding of these processes enables the explanation of the use (or non-use) of evidence in policy making, and potentially may help to shape future strategies to bridge the research-policy gaps and ultimately improve the uptake of evidence in decision making

    Growth arrest-specific transcript 5 associated snoRNA levels are related to p53 expression and DNA damage in colorectal cancer

    Get PDF
    BACKGROUND The growth arrest-specific transcript 5 gene (GAS5) encodes a long noncoding RNA (lncRNA) and hosts a number of small nucleolar RNAs (snoRNAs) that have recently been implicated in multiple cellular processes and cancer. Here, we investigate the relationship between DNA damage, p53, and the GAS5 snoRNAs to gain further insight into the potential role of this locus in cell survival and oncogenesis both in vivo and in vitro. METHODS We used quantitative techniques to analyse the effect of DNA damage on GAS5 snoRNA expression and to assess the relationship between p53 and the GAS5 snoRNAs in cancer cell lines and in normal, pre-malignant, and malignant human colorectal tissue and used biological techniques to suggest potential roles for these snoRNAs in the DNA damage response. RESULTS GAS5-derived snoRNA expression was induced by DNA damage in a p53-dependent manner in colorectal cancer cell lines and their levels were not affected by DICER. Furthermore, p53 levels strongly correlated with GAS5-derived snoRNA expression in colorectal tissue. CONCLUSIONS In aggregate, these data suggest that the GAS5-derived snoRNAs are under control of p53 and that they have an important role in mediating the p53 response to DNA damage, which may not relate to their function in the ribosome. We suggest that these snoRNAs are not processed by DICER to form smaller snoRNA-derived RNAs with microRNA (miRNA)-like functions, but their precise role requires further evaluation. Furthermore, since GAS5 host snoRNAs are often used as endogenous controls in qPCR quantifications we show that their use as housekeeping genes in DNA damage experiments can lead to inaccurate results
    • 

    corecore