13 research outputs found

    SpikeInterface, a unified framework for spike sorting

    Get PDF
    Much development has been directed toward improving the performance and automation of spike sorting. This continuous development, while essential, has contributed to an over-saturation of new, incompatible tools that hinders rigorous benchmarking and complicates reproducible analysis. To address these limitations, we developed SpikeInterface, a Python framework designed to unify preexisting spike sorting technologies into a single codebase and to facilitate straightforward comparison and adoption of different approaches. With a few lines of code, researchers can reproducibly run, compare, and benchmark most modern spike sorting algorithms; pre-process, post-process, and visualize extracellular datasets; validate, curate, and export sorting outputs; and more. In this paper, we provide an overview of SpikeInterface and, with applications to real and simulated datasets, demonstrate how it can be utilized to reduce the burden of manual curation and to more comprehensively benchmark automated spike sorters.ISSN:2050-084

    Directing visual attention during action observation modulates corticospinal excitability

    Get PDF
    Transcranial magnetic stimulation (TMS) research has shown that corticospinal excitability is facilitated during the observation of human movement. However, the relationship between corticospinal excitability and participants’ visual attention during action observation is rarely considered. Nineteen participants took part in four conditions: (i) a static hand condition, involving observation of a right hand holding a ball between the thumb and index finger; (ii) a free observation condition, involving observation of the ball being pinched between thumb and index finger; and (iii and iv) finger-focused and ball-focused conditions, involving observation of the same ball pinch action with instructions to focus visual attention on either the index finger or the ball. Single-pulse TMS was delivered to the left motor cortex and motor evoked potentials (MEPs) were recorded from the first dorsal interosseous (FDI) and abductor digiti minimi muscles of the right hand. Eye movements were recorded simultaneously throughout each condition. The ball-focused condition produced MEPs of significantly larger amplitude in the FDI muscle, compared to the free observation or static hand conditions. Furthermore, regression analysis indicated that the number of fixations on the ball was a significant predictor of MEP amplitude in the ball-focused condition. These results have important implications for the design and delivery of action observation interventions in motor (re)learning settings. Specifically, providing viewing instructions that direct participants to focus visual attention on task-relevant objects affected by the observed movement promotes activity in the motor system in a more optimal manner than free observation or no instructions

    Action prediction in younger versus older adults: Neural correlates of motor familiarity

    Get PDF
    Contains fulltext : 116607.pdf (publisher's version ) (Open Access)Generating predictions during action observation is essential for efficient navigation through our social environment. With age, the sensitivity in action prediction declines. In younger adults, the action observation network (AON), consisting of premotor, parietal and occipitotemporal cortices, has been implicated in transforming executed and observed actions into a common code. Much less is known about age-related changes in the neural representation of observed actions. Using fMRI, the present study measured brain activity in younger and older adults during the prediction of temporarily occluded actions (figure skating elements and simple movement exercises). All participants were highly familiar with the movement exercises whereas only some participants were experienced figure skaters. With respect to the AON, the results confirm that this network was preferentially engaged for the more familiar movement exercises. Compared to younger adults, older adults recruited visual regions to perform the task and, additionally, the hippocampus and caudate when the observed actions were familiar to them. Thus, instead of effectively exploiting the sensorimotor matching properties of the AON, older adults seemed to rely predominantly on the visual dynamics of the observed actions to perform the task. Our data further suggest that the caudate played an important role during the prediction of the less familiar figure skating elements in better-performing groups. Together, these findings show that action prediction engages a distributed network in the brain, which is modulated by the content of the observed actions and the age and experience of the observer.15 p

    Effects of context on visuomotor interference depends on the perspective of observed actions

    Get PDF
    Visuomotor interference occurs when the execution of an action is facilitated by the concurrent observation of the same action and hindered by the concurrent observation of a different action. There is evidence that visuomotor interference can be modulated top-down by higher cognitive functions, depending on whether own performed actions or observed actions are selectively attended. Here, we studied whether these effects of cognitive context on visuomotor interference are also dependent on the point-of-view of the observed action. We employed a delayed go/no-go task known to induce visuomotor interference. Static images of hand gestures in either egocentric or allocentric perspective were presented as "go'' stimuli after participants were pre-cued to prepare either a matching (congruent) or non-matching (incongruent) action. Participants performed this task in two different cognitive contexts: In one, they focused on the visual image of the hand gesture shown as the go stimulus (image context), whereas in the other they focused on the hand gesture they performed (action context). We analyzed reaction times to initiate the prepared action upon presentation of the gesture image and found evidence of visuomotor interference in both contexts and for both perspectives. Strikingly, results show that the effect of cognitive context on visuomotor interference also depends on the perspective of observed actions. When focusing on own-actions, visuomotor interference was significantly less for gesture images in allocentric perspective than in egocentric perspective; when focusing on observed actions, visuomotor interference was present regardless of the perspective of the gesture image. Overall these data suggest that visuomotor interference may be modulated by higher cognitive processes, so that when we are specifically attending to our own actions, images depicting others' actions (allocentric perspective) have much less interference on our own actions

    Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain

    No full text
    Pain is intimately linked with action systems that are involved in observational learning and imitation. Motor responses to one's own pain allow freezing or escape reactions and ultimately survival. Here we show that similar motor responses occur as a result of observation of painful events in others. We used transcranial magnetic stimulation to record changes in corticospinal motor representations of hand muscles of individuals observing needles penetrating hands or feet of a human model or noncorporeal objects. We found a reduction in amplitude of motor-evoked potentials that was specific to the muscle that subjects observed being pricked. This inhibition correlated with the observer's subjective rating of the sensory qualities of the pain attributed to the model and with sensory, but not emotional, state or trait empathy measures. The empathic inference about the sensory qualities of others' pain and their automatic embodiment in the observer's motor system may be crucial for the social learning of reactions to pain
    corecore