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12

Abstract13

Much development has been directed towards improving the performance and automation of14
spike sorting. This continuous development, while essential, has contributed to an over-saturation15
of new, incompatible tools that hinders rigorous benchmarking and complicates reproducible16
analysis. To address these limitations, we developed SpikeInterface, a Python framework designed17
to unify preexisting spike sorting technologies into a single codebase and to facilitate18
straightforward comparison and adoption of different approaches. With a few lines of code,19
researchers can reproducibly run, compare, and benchmark most modern spike sorting algorithms;20
pre-process, post-process, and visualize extracellular datasets; validate, curate, and export sorting21
outputs; and more. In this paper, we provide an overview of SpikeInterface and, with applications22
to real and simulated datasets, demonstrate how it can be utilized to reduce the burden of manual23
curation and to more comprehensively benchmark automated spike sorters.24

25

Introduction26

Extracellular recording is an indispensable tool in neuroscience for probing how single neurons and27
populations of neurons encode and transmit information. When analyzing extracellular recordings,28
most researchers are interested in the spiking activity of individual neurons, whichmust be extracted29
from the raw voltage traces through a process called spike sorting. Many laboratories perform30
spike sorting using fully manual techniques (e.g. XClust Mucha (1995), SimpleClust Voigts (2012),31
Plexon Offline Sorter Plexon (n.d.)), but such approaches are nearly impossible to standardize due32
to inherent operator biasWood et al. (2004). To alleviate this issue, spike sorting has seen decades33
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of algorithmic and software improvements to increase both the accuracy and automation of the34
process Rey et al. (2015). This progress has accelerated in the past few years as high-density devices35
Eversmann et al. (2003); Berdondini et al. (2005); Frey et al. (2010); Ballini et al. (2014);Müller et al.36
(2015); Yuan et al. (2016); Lopez et al. (2016); Jun et al. (2017a); Dimitriadis et al. (2018); Angotzi37
et al. (2019), capable of recording from hundreds to thousands of neurons simultaneously have38
made manual intervention impractical, increasing the demand for both accurate and scalable39
spike sorting algorithms Rossant et al. (2016); Pachitariu et al. (2016); Lee et al. (2017); Chung et al.40
(2017); Yger et al. (2018); Hilgen et al. (2017); Jun et al. (2017b); Diggelmann et al. (2018).41

Despite the development and widespread use of automatic spike sorters, there still exist no clear42
standards for how spike sorting should be performed or evaluated Rey et al. (2015); Barnett43
et al. (2016); Carlson and Carin (2019); Magland et al. (2020). Research labs that are beginning44
to experiment with high-density extracellular recordings have to choose from a multitude of45
spike sorters, data processing algorithms, file formats, and curation tools just to analyze their46
first recording. As trying out multiple spike sorting pipelines is time-consuming and technically47
challenging, many labs choose one and stick to it as their de facto solutionMagland et al. (2020).48
This has led to a fragmented software ecosystem which challenges reproducibility, benchmarking,49
and collaboration among different research labs.50

Previous work to standardize the field has focused on developing open-source frameworks that51
make extracellular analysis and spike sorting more accessible Egert et al. (2002); Bonomini et al.52
(2005); Hazan et al. (2006); Garcia and Fourcaud-Trocmé (2009); Goldberg et al. (2009); Bokil et al.53
(2010); Liu et al. (2011); Bologna et al. (2010); Oostenveld et al. (2011); Kwon et al. (2012);Mahmud54
et al. (2012); Bongard et al. (2014); Regalia et al. (2016); Zhang et al. (2017); Nasiotis et al. (2019).55
While useful tools in their own right, these frameworks only implement a limited suite of spike56
sorting technologies since their main focus is to provide entire extracellular analysis pipelines (spike57
trains, LFPs, EEG, and more). Moreover, these tools do little to improve the evaluation and compari-58
son of spike sorting performance which is still a relatively unsolved problem in electrophysiology. An59
exception to this is SpikeForestMagland et al. (2020), a recently developed open-source software60
suite that benchmarks 10 automated spike sorting algorithms against an extensive database of61
ground-truth recordings1. Despite these developments, there exists a need for an up-to-date spike62
sorting framework that can standardize the usage and evaluation of modern algorithms.63

In this paper we introduce SpikeInterface, the first open-source, Python-based2 framework exclu-64
sively designed to encapsulate all steps in the spike sorting pipeline. The goals of this software65
framework are five-fold.66

1. To increase the accessibility and standardization of modern spike sorting technologies by67
providing users with a simple application programming interface (API) and graphical user68
interface (GUI) that exist within a continuously integrated code-base.69

2. To make spike sorting pipelines fully reproducible by capturing the entire provenance of the70
data flow during run time.71

3. Tomake data access and analysis bothmemory and computation-efficient by utilizingmemory-72
mapping, parallelization, and high-performance computing platforms.73

4. To encourage the sharing of datasets, results, and analysis pipelines by providing full com-74
patibility with standardized file formats such as Neurodata Without Borders (NWB) Teeters75
et al. (2015); Ruebel et al. (2019) and the Neuroscience Information Exchange (NIX) Format76
NIX (n.d.).77

1SpikeForest makes use of SpikeInterface in many of its core capabilities (file IO, preprocessing, spike sorting).2We utilize Python as it is open-source, free, and increasingly popular in the neuroscience communityMuller et al. (2015);
Gleeson et al. (2017).
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5. To supply the most comprehensive suite of benchmarking capabilities available for spike78
sorting in order to guide future usage and development.79

In the remainder of this article, we showcase the numerous capabilities of SpikeInterface by80
performing an in-depth meta-analysis of preexisting spike sorters. This analysis includes quantifying81
the agreement among 6 modern spike sorters for dense probe recordings, benchmarking each82
sorter on ground truth, and introducing a consensus-based technique to potentially improve83
performance and enable automated curation. Afterwards, we present an overview of the codebase84
and how its interconnected components can be utilized to build full spike sorting pipelines. Finally,85
we contrast SpikeInterface with preexisting analysis frameworks and outline future directions.86

Results87

In this section, we perform a meta-analysis of 6 modern spike sorters on real and simulated88
datasets. This meta-analysis includes quantifying agreement among the sorters, benchmarking89
each sorter on ground truth, and investigating whether it is possible to combine outputs from90
multiple spike sorters to improve overall performance and to reduce the burden of manual curation.91
All analysis is done with spikeinterface version 0.10.0 which is available on PyPI (https://92
pypi.org/project/spikeinterface/). The code to perform this analysis and produce all figures can93
be found at https://spikeinterface.github.io/ which also showcases other experiments performed94
using SpikeInterface. The datasets are publicly available in NWB format on the DANDI archive95
(https://gui.dandiarchive.org/}/dandiset/000034/draft).96

Spike sorters show low agreement for the same high-density dataset97

The dataset we use in this analysis is a Neuropixels recording from a head-fixed mouse acquired at98
the Allen Institute for Brain Science (Siegle et al. (2019) dataset ID: 766640955; probe ID: 773592320 -99
Allen Brain Observatory Neuropixels dataset; ©2019 Allen Institute for Brain Science). The recording100
has 246 active recording channels (the remaining of the 384 Neuropixels channels were either not101
inserted in the brain tissue or below a firing rate of 0.1 Hz), and a sampling frequency of 30 kHz.102
The recording’s duration was trimmed to 15 minutes. The probe records from part of the cortex103
(V1), the hippocampus (CA1), the dentate gyrus, and the thalamus (LP). During the experiment, the104
mouse was presented with a variety of visual stimuli while freely running on a rotating disk (for105
more details see Siegle et al. (2019)). An activity map of the probe and a 1-s snippet of the traces106
on 10 channels are shown in Figure 1A. The notebook for reproducing the results for this section107
and the last section of the Results can be viewed at https://spikeinterface.github.io/blog/ensemble-108
sorting-of-a-neuropixels-recording/.109

For this analysis, we select six different spike sorters: HerdingSpikes2 Hilgen et al. (2017), Kilosort2110
Pachitariu et al. (2018), IronClust Jun et al. (2017b), SpyKING Circus Yger et al. (2018), Tridesclous111
Garcia and Pouzat (2015), and HDSort Diggelmann et al. (2018)3. As most of these algorithms112
have been tuned rigorously on multiple ground-truth datasets (including the recent large-scale113
evaluation from Magland et al. (2020)), we fix their parameters to default values to allow for114
straightforward comparison. We do not include Klusta Rossant et al. (2016), WaveClus Chaure115
et al. (2018), Kilosort Pachitariu et al. (2016), or MountainSort4 Chung et al. (2017) in this analysis116
as Klusta can only handle up to 64 channels, WaveClus is designed for low channel count probes,117

3The versions for each spike sorter are as follows: SpyKING Circus==0.9.7, Tridesclous==1.6.0, hdsort==1.0.0, Herd-ingSpikes2==0.3.7, IronClust==5.9.8, Kilosort2==GitHub commit 48bf2b81d8ad, HDSort==1.0.1
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Figure 1. Comparison of spike sorters on a real Neuropixels dataset. A) A visualization of the activity onthe Neuropixels array (top, color indicates spike rate estimated on each channel evaluated with thresholddetection) and of traces from the Neuropixels recording (below). B) The number of detected units for each ofthe 6 spike sorters (HS=HerdingSpikes2, KS=Kilosort2, IC=IronClust, TDC=Tridesclous, SC=SpyKING Circus,HDS=HDSort). C) The total number of units for which k sorters agree (unit agreement is defined as 50% spikematch). D) The number of units (per sorter) for which k sorters agree; Most sorters find many units that othersorters do not.

Kilosort is superseded by Kilosort2, and MountainSort4’s latest verion is currently not optimized for118
high channel counts, scaling quadratically with the number of channels.119

In Figure 1B, we show the number of units that each of the 6 sorters output. Immediately, we120
observe large variability among the sorters, with Tridesclous (TDC) finding the least units (187) and121
SpyKING Circus (SC) finding the most units (628). HerdingSpikes2 finds 210 units; Kilosort2 finds122
446 units; IronClust finds 233 units; and HDSort finds 317 units. From this result, we can see that123
there is no clear consensus among the sorters on the number of neurons in the recording (without124
performing extensive manual curation).125

126

127

128
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0.5 0.6 0.7 0.8 0.9 1.0
Agreement score

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Figure 1 - figure supplement 2. Cumulative histogram of agreement scores (above threshold of .5 that definesa match) for the ensemble sorting of the simulated ground-truth dataset. This analysis was performed with the6 chosen sorters and highlights how over 80% of the matched units had an agreement score greater than 0.8.
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Figure 1 - figure supplement 3. Comparison of spike sorters on a Neuropixels recording. This datasetcontains spontaneous neural activity from the rat cortex (motor and somatosensory areas) by Marques-Smithet al. Marques-Smith et al. (2018a,b) (dataset spe-c1). The dataset is also available athttps://gui.dandiarchive.org/}/dandiset/000034/draft. A) A visualization of the activity on the Neuropixels array(top, color indicates spike rate estimated on each channel evaluated with threshold detection) and of tracesfrom the Neuropixels recording (below). B) The number of detected units for each of the 6 spike sorters(HS=HerdingSpikes2, KS=Kilosort2, IC=IronClust, TDC=Tridesclous, SC=SpyKING Circus, HDS=HDSort). C) Thetotal number of units for which k sorters agree (unit agreement is defined as 50% spike match). D) The numberof units (per sorter) for which k sorters agree; Most sorters find many units that other sorters do not. Theanalysis notebook for this analysis can be found athttps://spikeinterface.github.io/blog/ensemble-sorting-of-a-neuropixels-recording-2/.

Next, we compare the unit spike trains found by each sorter to determine the level of agreement129
among the different algorithms (see the SpikeComparison Section of the Methods for how this is130
done). In Figure 1C, we visualize the total number of units for which k sorters agree (unit agreement131
is defined as a 50% spike train match; the time window to consider spikes as matching is 0.4 ms).132
Figure 1 - figure supplement 1 shows spike trains and templates for two sample matched units (one133
with a higher - 0.97 - and one with a lower agreement - 0.69). Of the 2031 total detected units, all 6134
sorters agree on just 33 of the units. This is surprisingly low given the relatively undemanding criteria135
of a 50% spike train match. We also find that two or more sorters agree on just 263 of the total136
units. To further break down the disagreement between spike sorters, Figure 1D shows the number137
of units per sorter for which k other sorters agree. For most sorters, over 50% of the units that138
they find do not match with any other sorter (with the exceptions of Ironclust and Tridesclous). For139
agreed-upon units, around 80% of the agreement scores are 0.8 or higher, indicating that matched140
units typically have high spike train agreement (Figure 1 - figure supplement 2).141
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Figure 1 - figure supplement 4. Comparison of spike sorters on a Biocam recording from a mouseretina This retina recording Hilgen et al. (2017) has 1’024 channels in a square configuration, and a samplingfrequency of 23199 Hz. The dataset can be found at https://gui.dandiarchive.org/}/dandiset/000034/draft. Onlyfour spike sorters were capable of processing this data set (HS=HerdingSpikes2, KS=Kilosort2, IC=IronClust,HDS=HDSort). A) A visualization of the activity on the Biocam array (top, color indicates spike rate estimated oneach channel evaluated with threshold detection) and of traces from the recording (below). B) The number ofdetected units for each of the 4 spike sorters. C) The total number of units for which k sorters agree (unitagreement is defined as 50% spike match). D) The number of units (per sorter) for which k sorters agree; Mostsorters find many units that other sorters do not. The analysis notebook for this analysis can be found athttps://spikeinterface.github.io/blog/ensemble-sorting-of-a-3brain-biocam-recording-from-a-retina/.

The analysis performed on this dataset suggests that agreement among spike sorters is startlingly142
low. To corroborate this finding, we repeat the same analysis using different datasets including143
a Neuropixels recordings from another lab and an in vitro retinal recording from a planar, high-144
density array. In both cases, we find similar disagreement among the sorters (Figures 1 - figure145
supplement 3 and 1 - figure supplement 4). The notebooks for these analyses can be viewed at146
https://spikeinterface.github.io/blog/ensemble-sorting-of-a-neuropixels-recording-2/ and147
https://spikeinterface.github.io/blog/ensemble-sorting-of-a-3brain-biocam-recording-from-a-retina/,148
respectively.149

This low agreement raises the following question: how many of the total outputted units actually150
correspond to real neurons? To explore this question, we turn to simulation where the ground-truth151
spiking activity is known a priori.152
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Evaluating spike sorters on a simulated dataset153

In this analysis, we simulate a 10 minute Neuropixels recording using the MEArec Python pack-154
age Buccino and Einevoll (2020). The recording contains the spiking activity of 250 biophysically155
detailed neurons (200 excitatory and 50 inhibitory cells from the Neocortical Micro Circuit Portal156
Ramaswamy et al. (2015); Markram et al. (2015)) that exhibit independent Poisson firing pat-157
terns. The recording also has an additive Gaussian noise with 10�V standard deviation. A vi-158
sualization of the simulated activity map and extracellular traces from the Neuropixels probe is159
shown in Figure 2A. A histogram of the signal-to-noise ratios (SNR) for the ground-truth units is160
shown in Figure 2B. The notebook for reproducing the results for this and the next section can be161
viewed at https://spikeinterface.github.io/blog/ground-truth-comparison-and-ensemble-sorting-162
of-a-synthetic-neuropixels-recording/.163
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164

We run the same six spike sorters on the simulated dataset, keeping the parameters the same165
as those used on the real Neuropixels dataset. We then utilize SpikeInterface to evaluate each166
spike sorter on the ground-truth dataset. Afterwards, we repeat the agreement analysis from the167
previous section to diagnose the low agreement among sorters.168

The main result of the ground-truth evaluation is summarized in Figure 2. As can be seen in Figure169
2C, the sorters, again, have a large discrepancy in the number of detected units. The number of170
detected units range from the 189 units found by Tridesclous to the 458 units found by HDSort.171
HerdingSpikes2 finds 233 units; Kilosort2 finds 415 units; IronClust finds 283 units; and SpyKING172
Circus finds 343 units. We again see that there is no clear consensus among the sorters on the173
number of neurons in the simulated recording.174

In Figure 2D, the accuracy, precision, and recall of all the ground-truth units are plotted for each175
spike sorter. Some sorters tend to favor precision over recall while others do the opposite (Figure 2176
- figure supplement 1A). Moreover, the accuracy is modulated by the SNR of the ground-truth units177
for all spike sorters except Kilosort2 which achieves an almost perfect performance on the low-SNR178
units (Figure 2 - figure supplement 1B). While most spike sorters have a wide range of scores for179
each metric, Kilosort2 attains significantly higher scores than the rest of the spike sorters for most180
ground-truth units.181

Figure 2E shows the breakdown of detected units for each spike sorter. Each unit is classified as182
well-detected, false positive, redundant, and/or overmerged by SpikeInterface (the definitions of each183
unit type can be found in the SpikeComparison Section of the Methods). This plot, interestingly,184
may shed some light on the remarkable accuracy of Kilosort2. While Kilosort2 has the most185
well-detected units (245), this comes at the cost of a high percentage of false positive (147) and186
redundant (21) units4. Notably, Tridesclous detects very few false positive/redundant units while187

4The high-rate of false positive/redundant units persists, but is alleviated, even when using Kilosort2’s automated curationstep which removes units that have >20% estimated contamination rate (computed from the refractory period violations). In that
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still finding many well-detected units. HDSort, on the flip side, finds many more false positive units188
than any other spike sorter. For a comprehensive comparison of spike sorter performance on189
both real and simulated datasets, we refer the reader to the related SpikeForest project (https:190
//spikeforest.flatironinstitute.org/)Magland et al. (2020).191

Low-agreement units are mainly false positives192

Similarly to the real Neuropixels dataset, we compare the agreement among the different spike193
sorters on the simulated dataset. Again, we observe a large disagreement among the spike sorting194
outputs with only 139 units of the 1921 total units (7.24%) being in agreement among all sorters195
(Figure 3A). We can break down the overall agreement by sorter (Figure 3B), highlighting that some196
sorters are more prone to finding low agreement units (HDSort, SpyKING Circus, Kilosort2) than197
other sorters (HerdingSpikes2, Ironclust, Tridesclous).198

Given that we know the ground-truth spiking activity of the simulated recording, we can now199
investigate whether low-agreement units actually correspond to ground-truth units or if they are200
falsely detected (false positive) units. In Figure 3C, bar plots for each sorter show the number201
of matched ground-truth units (blue) and false positive units (red) in relation to the ensemble202
agreement (1 - no agreement, 6 - full agreement). The plots show that (almost) all false positive units203
are ones that are found by only a single sorter (not matched with any other sorters), while most204
real units are matched by more than one sorter. We also assessed how well false positive units can205
be identified using fewer sorters (Figure 3 - figure supplement 1). This analysis showed that using a206
pair of sorters is sufficient to isolate almost all false positive units in each sorter, yet when fewer207
than four sorter outputs are compared, a significant fraction of true positive units found by only208
one sorter can be wrongly classified as false positives with this approach. For two sorters, the most209
reliable identification of true positives for this dataset was achieved by combining Kilosort2 and210
Ironclust (96% and 95% false positive and true positive detection rate, respectively). In Figure 3D211
we display the signal-to-noise ratio (SNR) as a function of the ensemble agreement. This shows,212
as expected, that higher SNR units have higher agreement among sorters. In other words, units213
with a large amplitude (high SNR) are easier to detect and more consistently found by many sorters.214
Additionally, we tested if SNR can be used to distinguish between false and true positive units,215
as noise may be wrongly detected as events with low SNR. We found that for Kilosort2’s output,216
which is best matched with ground-truth spike trains, SNR is not a good predictor of false positives217
(Figure 3 - figure supplement 2) - many false positives had a high estimated SNR. Taken together,218
these results suggest that the ensemble agreement among multiple sorters can be used to remove219
false positive units from each of the sorter outputs or to inform their subsequent manual curation.220

221

222

223

Consensus units highly overlap with manually curated ones224

We next investigate the ensemble agreement among the sorters on the real Neuropixels recording225
presented in Figure 1. As there is no ground-truth information in this setting to identify false226
case the number of well-detected units is 241, false positives are 93, and redundant units are 18. In both cases 2 overmergedunits are found.
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Figure 3. Comparison of spike sorters on a simulated Neuropixels dataset. A) The total number of unitsfor which k sorters agree (unit agreement is defined as 50% spike match). B) The number of units (per sorter)for which k sorters agree; Most sorters find many units that other sorters do not. (HS=HerdingSpikes2,KS=Kilosort2, IC=IronClust, TDC=Tridesclous, SC=SpyKING Circus, HDS=HDSort) C) Number of matchedground-truth units (blue) and false positive units (red) found by each sorter on which k sorters agree upon.Most of the false positive units are only found by a single sorter. Number of false positive units found by k ≥ 2sorters: HS=4, KS=4, IC=4, SC=2, TDC=1, HDS=2. D) Signal-to-noise ratio (SNR) of ground-truth unit with respectto the number of k sorters agreement. Results are split by sorter.

positives, we turn to manually curated sorting outputs. Two experts (which we will refer to as C1227
and C2) manually curate the spike sorting output of Kilosort2 using the Phy software. During this228
curation step, the two experts label the sorted units as false positives or real units by rejecting,229
splitting, merging, or accepting units according to spike features Rossant and Harris (2013).230

Figure 4A shows the agreement between expert 1 (C1) and expert 2 (C2). While there are some231
discrepancies (as expected when manually curating spike sorting resultsWood et al. (2004)), most232
of the curated units (226 out of 351 - 64.2%) are agreed upon by both experts. Notably, 174 units233
found by Kilosort2 are discarded by both experts, indicating a large number of false positive units.234

We then compare the output of each of the spike sorters to C1 and C2 and find that, in general,235
only a small percentage of units outputted by any single sorter is matched to the curated results236
(Figure 4). The highest percentage match is actually IronClust which is surprising given that the237
initial sorting output was curated from Kilosort2’s output (IC ∩ C1 = 59.83%, IC ∩ C2 = 61.1%, KS ∩ C1238
= 50.67%, KS ∩ C2 = 56.25%).239

Next, for each sorter, we take all the units that are matched by at least one other sorter (consensus240
units, k ≥ 2) and all units that are found by only that sorter (non-consensus units, k = 1). We refer to241

11 of 30



Manuscript submitted to eLife

False positives
in single sorting

True positives
in ensemble sorting

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fr
ac

tio
n 

of
 u

ni
ts

Number of
sorters

2
3
4
5
6

Figure 3 - figure supplement 1. The fractions of predicted false and true positive units from ensembles usingdifferent numbers of sorters. All possible subsets of two to five of the six sorters were tested by removingcorresponding units from the full sorting comparison. Each dot corresponds to one unique combination ofsorters. This analysis shows that false positive units are well-identified using pairs of sorters (almost all falsepositive units are only found by one sorter), indicating that the sorters are biased in different ways. However,the fraction of true positives in the ensemble (at least two sorters agree) can be significantly lower when onlypairs of sorters are used. This is explained by the fact that, for this dataset, a fraction of true positive units areonly found by one sorter (as expected since the quality of detection and isolation of the units varies amongsorters). In contrast, using four or more sorters reliably identifies most true positive units. For two sorters, themost reliable identification of true positives was achieved by combining two of Kilosort2, Ironclust and HDSort.

0 5 10 15 20 25
SNR

0

10

20

30

40

50

60

70

Nu
m

be
r o

f u
ni

ts

matched units
unmatched units

Figure 3 - figure supplement 2. The SNR of all units found by Kilosort2 in the ground-truth data separatedinto those with and without matches in the ground-truth spike trains. Many detected false positive units have aSNR above the mode of the ground-truth SNR, indicating that SNR is not a good measure to separate false andtrue positives in this case

the consensus units of a sorter as Sorterc and the non-consensus units of a sorter as Sorternc . In242
Figure 4C, we show the match percentage between consensus units and curated units. The average243
match percentage is above 70% for all sorters showing that there is a large agreement between244
the manually curated outputs and the consensus-based output. Kilosort2 has the highest match245
(KSc ∩ C1 = 84.55%, KSc ∩ C2 = 89.55%), slightly higher than Ironclust (ICc ∩ C1 = 82.63%, ICc ∩ C2 =246
83.83%). Conversely, the percentage of non-consensus units matched to curated units is very small247

12 of 30



Manuscript submitted to eLife

A

10 4819

174

22
45

207

Curated 1 Curated 2

Kilosort2

HS

KS

IC

TDC

SC

HDS

20

60

100

C Percent consensus units
with match in curated sets

HS

KS

IC

TDC

SC

HDS

20

60

100

B Percent all units
with match in curated sets

HS

KS

IC

TDC

SC

HDS
10

20

D Percent non-consensus units
with match in curated sets

Curated 1

Curated 2

Figure 4. Comparison between consensus and manually curated outputs. A) Venn diagram showing theagreement between Curator 1 and 2. 174 units are discarded by both curators from the Kilsort2 output. B)Percent of matched units between the output of each sorter and C1 (red) and C2 (blue). Ironclust has thehighest match with both curated datasets. C) Similar to C, but using the consensus units (units agreed upon byat least 2 sorters - k ≥ 2). The percent of matching with curated datasets is now above 70% for all sorters, withKilosort2 having the highest match (KSc ∩ C1 = 84.55%, KSc ∩ C2 = 89.55%), slightly higher than Ironclust (ICc ∩C1 = 82.63%, ICc ∩ C2 = 83.83%). D) Percent of non-consensus units (k = 1) matched to curated datasets. Theonly significant overlap is between Curator 1 and Kilosort2, with a percent around 18% (KSnc ∩ C1 = 18.58%, KSnc
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(Figure 4D) for all sorters.248

Overall, this analysis suggests that a consensus-based approach to curation could allow for identifi-249
cation of real neurons from spike sorted data. Despite differences among the sorters with respect250
to the number of detected neurons and the quality of their isolation (as demonstrated by the251
ground-truth analysis), the consensus-based approach has good agreement with hand-curated data252
and appears to be less variable as illustrated by the small but significant disagreement between the253
two curators.254
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Materials and Methods255

Overview of SpikeInterface256

SpikeInterface consists of five main Python packages designed to handle different steps in the257
spike sorting pipeline: (i) spikeextractors, for extracellular recording, sorting output, and probe258
file I/O; (ii) spiketoolkit for low level processing such as pre-processing, post-processing, valida-259
tion, curation; (iii) spikesorters for spike sorting algorithms and job launching functionality; (iv)260
spikecomparison for sorter comparison, ground-truth comparison, and ground-truth studies; and261
(v) spikewidgets, for data visualization.262

These five packages can be installed and used through the spikeinterfacemetapackage, which263
contains stable versions of all five packages as internal modules (see Figure 5). With these five264
packages (or our meta-package), users can build, run, and evaluate full spike sorting pipelines in a265
reproducible and standardized way. In the following subsections, we present an overview of, and a266
code snippet for, each package.267

SpikeExtractors268

The spikeextractors package5 is designed to alleviate issues of any file format incompatibility269
within spike sorting without creating additional file formats. To this end, spikeextractors contains270
two core Python objects that can directly and uniformly access all spike sorting related files: the271
RecordingExtractor and the SortingExtractor .272

The RecordingExtractor directly interfaces with an extracellular recording and can query it for273
four primary pieces of information: (i) the extracellular recorded traces; (ii) the sampling frequency;274
(iii) the number of samples, or frames, in the recording; and (iv) the channel indices of the recording275
electrodes. These data are shared across all extracellular recordings allowing for standardized276
retrieval functions. In addition, a RecordingExtractor may store extra information about the277
recording device as "channel properties" which are key–value pairs. This includes properties such as278
"location", "group", and "gain" which are either provided by certain extracellular file formats, loaded279
manually by the user, or loaded automatically with our built-in probe file (.prb or .csv) reader. Taken280
together, the RecordingExtractor is an object representation of an extracellular recording and281
the associated probe configuration.282

The SortingExtractor directly interfaces with a sorting output and can query it for two primary283
pieces of information: (i) the unit indices; and (ii) the spike train of each unit. Again, these data are284

5https://github.com/SpikeInterface/spikeextractors
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Figure 5. Overview of SpikeInterface’s Python packages, their different functionalities, and how they can beaccessed by our meta-package, spikeinterface.
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shared across all sorting outputs. A SortingExtractor may also store extra information about285
the sorting output as either "unit properties" or "unit spike features", key–value pairs which store286
information about the individual units or the individual spikes of each unit, respectively. This287
extra information is either loaded from the sorting output, loaded manually by the user, or loaded288
automatically with built-in post-processing tools (discussed in the SpikeToolkit Section). Taken289
together, the SortingExtractor is an object representation of a sorting output along with any290
associated post-processing.291

Critically, both Extractor types can lazily query the underlying datasets for information as it is292
required, reducing their memory footprint and allowing their use for long, large-scale recordings.293
While this is the default operation mode, Extractors can also cache parts of the dataset in294
temporary binary files to enable faster downstream computations at the cost of higher memory295
usage. All extracted data is converted into either native Python data structures or into numpy296
arrays for immediate use in Python. Additionally, each Extractor can be dumped to and loaded297
from a json file, a pickle file, or a dictionary, ensuring full provenance and allowing for parallel298
processing.299

The following code snippet illustrates how Extractors can be used to retrieve raw traces from an300
extracellular recording and spike trains from a sorting output:301

import sp ike inter face . extractors as se302
recording = se . MyFormatRecordingExtractor ( f i l e _pa th= ’ myrecording ’ )303
sort ing = se . MyFormatSortingExtractor ( f i l e _pa th= ’ mysorting ’ )304
traces = recording . get_traces ( ) # 2D numpy array ( channels x time )305
sp ike_ t ra in = sort ing . ge t_un i t _sp ike_ t ra in ( un i t _ id =1) # 1D \ t e x t t t {numpy} array306

Along with using Extractors for single files, it is possible to access data from multiple files or307
portions of files with the MultiExtractors and SubExtractors , respectively. Both have identical308
functionality to normal Extractors and can be used and treated in the same ways, simplifying, for309
instance, the combined analysis of a recording split into multiple files.310

As of this moment, SpikeInterface supports 19 extracellular recording formats and 18 sorting output311
formats. The available file formats can be found in Table 1. Although this covers many popular312
formats in extracellular analysis (including Neurodata Without Borders Teeters et al. (2015) and NIX313
NIX (n.d.)), we expect the number of formats to grow with future versions as adding a new format314
is as simple as making a new Extractor subclass for it. We also have started to integrate NEO’s315
Garcia et al. (2014) I/O system into spikeextractors which allow SpikeInterface to support many316
more open-source and proprietary file formats without changing any functionality. Already, two317
recording formats have been added through our NEO integration (Neuralynx Neuralynx (n.d.) and318
Plexon Plexon (n.d.)).319

320

SpikeToolkit321

The spiketoolkit package6 is designed for efficient pre-processing, post-processing, validation,322
and curation of extracellular datasets and sorting outputs. It contains fourmodules that encapsulate323
each of these functionalities: preprocessing , postprocessing , validation , and curation .324

6https://github.com/SpikeInterface/spiketoolkit
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Pre-processing.325

The preprocessing module provides functions to process raw extracellular recordings before326
spike sorting. To pre-process an extracellular recording, the user passes a RecordingExtractor327
to a pre-processing function which returns a new "preprocessed" RecordingExtractor . This328
new RecordingExtractor , which can be used in exactly the same way as the original extractor,329
implements the preprocessing in a lazy fashion so that the actual computation is performed only330
when data is requested. As all pre-processing functions take in and return a RecordingExtractor ,331
they can be naturally chained together to perform multiple pre-processing steps on the same332
recording.333

Pre-processing functions range from commonly used operations, such as bandpass filtering, notch334
filtering, re-referencing signals, and removing channels, to more advanced procedures such as335
clipping traces depending on the amplitude, or removing artifacts arising, for example, from336
electrical stimulation. The following code snippet illustrates how to chain together a few common337
pre-processing functions to process a raw extracellular recording:338

import sp ike inter face . sp i ke too l k i t as st339
recording = st . preprocessing . bandpass_f i l ter ( recording , freq_min=300 , freq_max=6000)340
recording_1 = st . preprocessing . remove_bad_channels ( recording , bad_channels = [ 5 ] )341
recording_2 = st . preprocessing . common_reference ( recording_1 , reference= ’median ’ )342

Post-processing.343

The postprocessing module provides functions to compute and store information about an344
extracellular recording given an associated sorting output. As such, post-processing functions345
are designed to take in both a RecordingExtractor and a SortingExtractor , using them in346
conjunction to compute the desired information. These functions include, but are not limited to:347
extracting unit waveforms and templates, computing principle component analysis projections, as348
well as calculating features from templates (e.g. peak to valley duration, full-width half maximum).349

One essential feature of the postprocessing module is that it provides the functionality to ex-350
port a RecordingExtractor / SortingExtractor pair into the Phy format for manual curation later.351
Phy Rossant and Harris (2013); Rossant et al. (2016) is a popular manual curation GUI that al-352
lows users to visualize a sorting output with several views and to curate the results by manually353
merging or splitting clusters. Phy is already supported by several spike sorters (including klusta,354
Kilosort, Kilosort2, and SpyKING Circus) so our exporter function extends Phy’s functionality to355
all SpikeInterface-supported spike sorters. After manual curation is performed in Phy, the curated356
data can be re-imported into SpikeInterface using the PhySortingExtractor for further analysis.357
The following code snippet illustrates how to retrieve waveforms for each sorted unit, compute358
principal component analysis (PCA) features for each spike, and export to Phy using SpikeInterface:359

import sp ike inter face . t oo l k i t as st360
waveforms = st . postprocessing . get_unit_waveforms ( recording , sort ing )361
pca_scores = st . postprocessing . compute_unit_pca_scores ( recording , sort ing , n_comp=3)362
st . postprocessing . export_to_phy ( recording , sort ing , output_folder= ’ phy_folder ’ )363
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Validation.364

The validation module allows users to automatically evaluate spike sorting results in the absence365
of ground truth with a variety of quality metrics. The quality metrics currently available are a366
compilation of historical and modern approaches that were re-implemented by researchers at Allen367
Institute for Brain Science7 Siegle et al. (2019) and by the SpikeInterface team (see Table 2).368

Each of SpikeInterface’s quality metric functions internally utilize the postprocessing module to369
generate all data needed to compute the specified metric (amplitudes, principal components, etc.).370
The following code snippet demonstrates how to compute both a single quality metric (isolation371
distance) and also all the quality metrics with just two function calls:372

import sp ike inter face . t oo l k i t as st373
i so_metr ic = st . va l ida t ion . compute_isolat ion_distances ( sort ing , recording )374
a l l _met r i c s = st . va l ida t ion . compute_quality_metrics ( sort ing , recording )375

376

Curation.377

The curation module allows users to quickly remove units from a SortingExtractor based on378
computed quality metrics. To curate a sorted dataset, the user passes a SortingExtractor to a379
curation function which returns a new "curated" SortingExtractor (similar to how pre-processing380
works). This new SortingExtractor can be used in exactly the same way as the original extractor.381
As all curation functions take in and return a SortingExtractor , they can be naturally chained382
together to perform multiple curation steps on the same sorting output.383

Currently, all implemented curation functions are based on excluding units with respect to a384
user-defined threshold on a specified quality metric. These curation functions will compute the385
associated quality metric and then threshold the dataset accordingly. The following code snippet386
demonstrates how to chain together two curation functions that are based on different quality met-387
rics and apply a "less" threshold to the underlying units (exclude all units below the given threshold):388

import sp ike inter face . t oo l k i t as st
sort ing_1 = st . curat ion . thresho ld_ f i r ing_ra tes ( sort ing , threshold =2.3 ,

threshold_sign= ’ less ’ )
sort ing_2 = st . curat ion . threshold_snrs ( sort ing_1 , recording , threshold =10 ,

threshold_sign= ’ less ’ )
389

390

SpikeSorters391

The spikesorters 8 package provides a straightforward interface for running spike sorting algo-392
rithms supported by SpikeInterface. Modern spike sorting algorithms are built and deployed in a393
variety of programming languages including C, C++, MATLAB, and Python. Along with variability in394
the underlying program languages, each sorting algorithm may depend on external technologies395
like CUDA or command line interfaces (CLIs), complicating standardization. To unify these disparate396

7https://github.com/AllenInstitute/ecephys_spike_sorting8https://github.com/SpikeInterface/spikesorters
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algorithms into a single codebase, spikesorters provides Python-wrappers for each supported397
spike sorting algorithm. These spike sorting wrappers use a standard API for running the corre-398
sponding algorithms, internally handling intrinsic complexities such as automatic code generation399
for MATLAB- and CLI-based algorithms. Each spike sorting wrapper is implemented as a subclass of400
a BaseSorter class that contains all shared code for running the spike sorters.401

To run a specific spike sorting algorithm, users can pass a RecordingExtractor object to the402
associated function in spikesorters and overwrite any default parameters with new values403
(only essential parameters are exposed to the user for modification). Internally, each function404
initializes a spike sorting wrapper with the user-defined parameters. This wrapper then creates405
and modifies a new spike sorter configuration and runs the sorter on the dataset encapsulated406
by the RecordingExtractor . Once the spike sorting algorithm is finished, the sorting output407
is saved and a corresponding SortingExtractor is returned to the user. For each sorter, all408
available parameters and their descriptions can be retrieved using the get_default_params() and409
get_params_description() functions, respectively.410

In the following code snippet, Mountainsort4 and Kilosort2 are used to sort an extracellular record-411
ing. Running each algorithm (and changing the default parameters) can be done as follows:412

import sp ike inter face . sorters as ss413
sorting_MS4 = ss . run_mountainsort4 ( recording , adjacency_radius =50)414
sorting_KS2 = ss . run_k i losort2 ( recording , detect_threshold =5)415

Our spike sorting functions also allow for users to sort specific "groups" of channels in the recording416
separately (and in parallel, if specified). This can be very useful for multiple tetrode recordings417
where the data are all stored in one file, but the user wants to sort each tetrode separately. For418
large-scale analyses where the user wants to run many different spike sorters on many different419
datasets, spikesorters provides a launcher function which handles any internal complications420
associated with running multiple sorters and returns a nested dictionary of SortingExtractor421
objects corresponding to each sorting output. The launcher can be deployed on HPC platforms422
through the multiprocessing or dask engine Dask (2016). Finally, and importantly, when running423
a spike sorting job the recording information and all the spike sorting parameters are saved in a log424
file, including the console output of the spike sorting run (which can be used to inspect errors). This425
provenance mechanism ensures full reproducibility of the spike sorting pipeline.426

Currently, SpikeInterface supports 10 semi-automated spike sorters which are listed in Table 3.427
We encourage developers to contribute to this expanding list in future versions and we provide428
comprehensive documentation on how to do so9.429

SpikeComparison430

The spikecomparison package10 provides a variety of tools that allow users to compare and431
benchmark sorting outputs. Along with these comparison tools, spikecomparison also provides432
the functionality to run systematic performance comparisons of multiple spike sorters on multiple433
ground-truth recordings.434

Within spikecomparison , there exist three core comparison functions:435
9https://spikeinterface.readthedocs.io/en/latest/contribute.html10https://github.com/SpikeInterface/spikecomparison
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1. compare_two_sorters - Compares two spike sorting outputs.436
2. compare_multiple_sorters - Compares multiple spike sorting outputs.437
3. compare_sorter_with_ground_truth - Compares a spike sorting output to ground truth.438

Each of these comparison functions takes in multiple SortingExtractor objects and uses them to439
compute agreement scores among the underlying spike trains. The agreement score between two440
spike trains is defined as:441

score =
#nmatcℎes

#n1 + #n2 − #nmatcℎes
(1)

where #nmatcℎes is the number of "matched" spikes between the two spike trains and #n1 and #n2 are442
the number of spikes in the first and second spike train, respectively. Two spikes from two different443
spike trains are "matched" when they occur within a certain time window of each other (this window444
length can be adjusted by the user and is 0.4 ms by default).445

When comparing two sorting outputs ( compare_two_sorters ), a linear assignment based on the446
Hungarian method Kuhn (1955) is used. With this assignment method, each unit from the first447
sorting output can be matched to at most one other unit in the second sorting output. The final448
result of this comparison is then the list of matching units (given by the Hungarian method) and the449
agreement scores of the spike trains.450

The multi-sorting comparison function ( compare_multiple_sorters ) can be used to compute451
the agreement among the units of many sorting outputs at once. Internally, pair-wise sorter452
comparisons are run for all of the sorting output pairs. A graph is then built with the sorted units as453
nodes and the agreement scores among the sorted units as edges. With this graph implementation,454
it is straightforward to query for units that are in agreement among multiple sorters. For example, if455
three sorting outputs are being compared, any units that are in agreement among all three sorters456
will be part of a subgraph with large weights.457

For a ground-truth comparison ( compare_sorter_with_ground_truth ), either the Hungarian or458
the best-match method can be used. With the Hungarian method, each tested unit from the sorting459
output is matched to at most a single ground-truth unit. With the best-match method, a tested460
unit from the sorting output can be matched to multiple ground-truth units (above an adjustable461
agreement threshold) allowing for more in-depth characterizations of sorting failures. Note that462
in the SpikeForest benchmarking software suiteMagland et al. (2020), the best-match strategy is463
used.464

Additionally, when comparing a sorting output to a ground-truth sorted result, each spike can be465
optionally labeled as:466

• True positive (tp): Found both in the ground-truth spike train and tested spike train.467
• False negative (fn): Found in the ground-truth spike train, but not in the tested spike train.468
• False positive (fp): Found in the tested spike train, but not in the ground-truth spike train.469

Using these labels, the following performance measures can be computed:470

• Accuracy: #tp
(#tp + #fn + #fp)

471
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• Recall: #tp
(#tp + #fn)

472

• Precision: #tp
(#tp + #fp)

473

• Miss rate: #fn
(#tp + #fn)

474

• False discovery rate: #fp
(#tp + #fp)

475

While previous metrics give a measure of individual spike train quality, we also propose metrics at a476
unit population level. Based on the matching results and the scores, the units of the sorting output477
are classified as well-detected, false positive, redundant, and overmerged. Well-detected units are478
matched units with an agreement score above 0.8. False positive units are unmatched units or units479
which are matched with an agreement score below 0.2. Redundant units have agreement scores480
above 0.2 with only one ground-truth unit, but are not the best matched tested units (redundant481
units can either be oversplit or duplicate units). Overmerged units have an agreement score above482
0.2 with two or more ground-truth units. All these agreement score thresholds are adjustable by the483
user. We would like to highlight to the reader that the unit classification proposed here is currently484
only based on agreement score (i.e. accuracy). More sophisticated classification rules could involve485
a combination of accuracy, precision, and recall values, which can be easily computed for each unit486
with the spikecomparison module.487

The following code snippet shows how to perform all three types of spike sorter comparisons:488

import sp ike inter face . comparison as sc489
comp_type_1 = sc . compare_two_sorters ( sorting1 , sort ing2 )490
comp_type_2 = sc . compare_multiple_sorters ( [ sorting1 , sorting2 , sort ing3 ] )491
comp_type_3 = sc . compare_sorter_with_ground_truth ( gt_sort ing , tested_sort ing )492

Along with the three comparison functions, spikecomparison also includes a GroundTruthStudy493
class that allows for the systematic comparison of multiple spike sorters on multiple ground-truth494
datasets. With this class, users can set up a study folder (in which the recordings to be tested495
are saved), run several spike sorters and store their results in a compact way, perform systematic496
ground-truth comparisons, and aggregate the results in pandas dataframesMcKinney et al. (2010).497

SpikeWidgets498

The spikewidgets package11 implements a variety of widgets that allow for efficient visualization499
of different elements in a spike sorting pipeline.500

There exist four categories of widgets in spikewidgets . The first category utilizes a501
RecordingExtractor for its visualization. This category includes widgets for visualizing time502
series data, electrode geometries, signal spectra, and spectrograms. The second category uti-503
lizes a SortingExtractor for its visualization. These widgets include displays for raster plots,504
auto-correlograms, cross-correlograms, and inter-spike-interval distributions. The third category505
utilizes both a RecordingExtractor and a SortingExtractor for its visualization. These widgets506
include visualizations of unit waveforms, amplitude distributions for each unit, amplitudes of507
each unit over time, and PCA features. The fourth category utlizes comparison objects from the508
spikecomparison package for its visualization. These widgets allow the user to visualize confusion509
matrices, agreement scores, spike sorting performance metrics (e.g. accuracy, precision, recall) with510
11https://github.com/SpikeInterface/spikewidgets
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respect to a unit property (e.g. SNR), and the agreement between multiple sorting algorithms on511
the same dataset.512

The following code snippet demonstrates how SpikeInterface can be used to visualize ten seconds513
of both the extracellular traces and the corresponding raster plot:514

import sp ike inter face . widgets as sw515
sw . p lot_t imeser ies ( recording , channel_ids = [0 ,1 ,2 ,3 ] , trange =[0 ,10 ] )516
sw . p lo t_ ras ters ( sort ing , un i t _ ids = [0 ,1 ,3 ] , trange =[0 ,10 ] )517

Building a spike sorting pipeline518

So far, we have given an overview of each of the main packages in isolation. In this section, we519
illustrate how these packages can be combined, using both the Python API and the Spikely520
GUI, to build a robust spike sorting pipeline. The spike sorting pipeline that we construct using521
SpikeInterface is depicted in Figure 6A and consists of the following analysis steps:522

1. Loading an Open Ephys recording Siegle et al. (2017).523
2. Loading a probe file.524
3. Applying a bandpass filter.525
4. Applying common median referencing to reduce the common mode noise.526
5. Spike sorting with Mountainsort4.527
6. Removing clusters with less than 100 events.528
7. Exporting the results to Phy for manual curation.529

Traditionally, implementing this pipeline is challenging as the user has to load data frommultiple file530
formats, interface with a probe file, memory-map all the processing functions, prepare the correct531
inputs for Mountainsort4, and understand how to export the results into Phy. Even if the user532
manages to implement all of the analysis steps on their own, it is difficult to verify their correctness533
or reuse them without proper unit testing and code reviewing.534

Using the Python API535

Using SpikeInterface’s Python API to build the pipeline shown in Figure 6A is straightforward. Each536
of the seven steps is implemented with a single line of code (as shown in Figure 6B). Additionally,537
data visualizations can be added for each step of the pipeline using the appropriate widgets (as538
described in the SpikeWidgets Section). Unlike handmade scripts, SpikeInterface has a wide range539
of unit tests, employs continuous integration, and has been carefully developed by a team of540
researchers. Users, therefore, can have increased confidence that the pipelines they create are541
correct and reusable. Additionally, SpikeInterface tracks the entire provenance of the performed542
analysis, allowing other users (or the same user) to reproduce the analysis at a later date.543

Using the spikely GUI544

Along with our Python API, we also developed spikely 12, a PyQt-based GUI that allows for simple545
construction of complex spike sorting pipelines. With spikely , users can build workflows that546
include: (i) loading a recording and a probe file; (ii) performing pre-processing on the underlying547
12https://github.com/SpikeInterface/spikely
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Figure 6. Sample spike sorting pipeline using SpikeInterface. (A) A diagram of a sample spike sorting pipeline.Each processing step is colored to represent the SpikeInterface package in which it is implemented and thedashed, colored arrows demonstrate how the Extractors are used in each processing step. (B) How to usethe Python API to build the pipeline shown in (A). (C) How to use the GUI to build the pipeline shown in (A).

recording with multiple processing steps; (iii) running any spike sorter supported by SpikeInterface548
on the processed recording; (iv) automatically curating the sorter’s output; and (v) exporting the549
final result to a variety of file formats, including Phy. At its core, spikely utilizes SpikeInterface’s550
Python API to run any constructed spike sorting workflow. This ensures that the functionality of551
spikely grows organically with that of SpikeInterface.552

Figure 6C shows a screenshot from spikely where the pipeline in Figure 6A is constructed. Each553
stage of the pipeline is added using drop-down lists, and all the parameters (which were not left at554
their default values) are set in the right-hand panel. Once a pipeline is constructed in spikely , the555
user can save it using the built-in save functionality and then load it back into spikely at a later556
date. Since spikely is cross-platform and user-friendly, we believe it can be utilized to increase557
the accessibility and reproducibility of spike sorting.558

Discussion559

In this paper, we introduced SpikeInterface, a Python framework designed to enhance the acces-560
sibility, reliability, efficiency, and reproducibility of spike sorting. To illustrate the use-cases and561
advantages of SpikeInterface, we performed a detailed meta-analysis that included: quantifying the562
agreement among 6 modern sorters on a real dataset, benchmarking each sorter on a simulated563
ground-truth recording, and investigating the performance of a consensus-based spike sorting and564
how it compares with manually curated results. To highlight the modular design of SpikeInterface,565
we then provided descriptions and code samples for each of the five main packages and showed566
how they could be chained together to construct flexible spike sorting workflows.567

Ensemble spike sorting568

Our analysis demonstrated that spike sorters not only differ in unit isolation quality, but can also569
return a significant number of false positive units. To identify true neurons and remove poorly570
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sorted and noisy units, we combined the output of several spike sorters and found that although571
agreement between sorters is generally poor, units that are found by more than one sorter are572
likely true positives. This strategy, which we term consensus-based or ensemble spike sorting (a573
terminology borrowed from machine learning Dietterich (2000)) appears to be a viable alternative574
to manual curation which suffers from high-variability among different operatorsWood et al. (2004);575
Rossant et al. (2016). Alternatives to manual curation are especially enticing as the density and576
number of simultaneously recording channels continue to increase rapidly.577

We hypothesise that consensus-based spike sorting (or curation) can be utilized in a number of578
different ways. A first possibility is to choose a suitable spike sorter (for instance, based on the579
extensive ground-truth comparison performed by SpikeForestMagland et al. (2020)) and then to580
curate its output by retaining the units that are in agreement with other sorters. Alternatively,581
a more conservative approach is to simply record the agreement scores for all sorted units and582
then hand-curate only those units that have low agreement. A third method, already implemented583
in SpikeInterface, is to generate a consensus spike sorting by using, for each unit, the union of584
the two closest matching units from different sorters (matching spikes are only considered once).585
Although more work is needed to quantitatively assess the advantages and disadvantages of each586
approach, our analysis indicates that agreement among sorters can be a useful tool for curating587
sorting results.588

Although ensemble spike sorting is an exciting new direction to explore, there are other methods589
for curation that must be considered. One popular curation method is to accept or reject sorted590
units based on a variety of quality metrics (this is supported by SpikeInterface). Another method591
that is gaining more popularity is to use the large amount of available curated datasets to train592
classifiers that can automatically flag a unit as “good” or “noise” depending on some features, such593
as waveform shape. Finally, while manual curation is subjective and time consuming, it is the only594
method that allows for merging and splitting of units and, through powerful software tools such as595
Phy Rossant et al. (2014, 2016), it allows for full control over the curation process. Future research596
into these different curation methods is required to determine which are appropriate for the new597
influx of high-density extracellular recording devices.598

Comparison to other frameworks599

As mentioned in the introduction, many software tools have attempted to improve the accessibility600
and reproducibility of spike sorting. Here, we review the four most recent tools that are in use (to601
our knowledge) and compare them to SpikeInterface.602

Nev2lkit Bongard et al. (2014) is a cross-platform, C++-based GUI designed for the analysis of603
recordings from multi-shank multi-electrode arrays (Utah arrays). In this GUI, the spike sorting step604
consists of PCA for dimensionality reduction and then klustakwik for automatic clustering Rossant605
et al. (2016). As Nev2lkit targets low-density probes where each channel is spike sorted separately,606
it is not suitable for the analysis of high-density recordings. Also, since it implements only one spike607
sorter, users cannot utilize any consensus-based curation or exploration of the data. The software608
is available online13, but it lacks version-control and automated testing with continuous integration609
platforms.610

SigMateMahmud et al. (2012) is a MATLAB-based toolkit built for the analysis of electrophysiological611
data. SigMate has a large scope of usage including the analysis of electroencephalograpy (EEG)612
signals, local field potentials (LFP), and spike trains. Despite its broad scope, or because of it, the613
13http://nev2lkit.sourceforge.net/
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spike sorting step in SigMate is limited to Wave clus Chaure et al. (2018), which is mainly designed614
for spike sorting recordings from a few channels. This means that bothmajor limitations of Nev2lkit615
(as discussed above) also apply to SigMate. The software is available online14, but again, it lacks616
version-control and automated testing with continuous integration platforms.617

Regalia et al. Regalia et al. (2016) developed a spike sorting framework with an intuitive MATLAB-618
based GUI. The spike sorting functionality implemented in this framework includes 4 feature619
extraction methods, 3 clustering methods, and 1 template matching classifier (O-Sort Rutishauser620
et al. (2006)). These "building blocks" can be combined to construct new spike sorting pipelines.621
As this framework targets low-density probes where signals from separate electrodes are spike622
sorted separately, its usefulness for newly developed high-density recording technology is limited.623
Moreover, this framework only runs with a specific file format (MCD format from Multi Channel624
SystemsMCS (n.d.)). The software is distributed upon request.625

Most recently, Nasiotis et al. Nasiotis et al. (2019) implemented IN-Brainstorm, a MATLAB-based626
GUI designed for the analysis of invasive neurophysiology data. IN-Brainstorm allows users to run627
three spike sorting packages, (Wave clus Chaure et al. (2018), UltraMegaSort2000 Hill et al. (2011),628
and Kilosort Pachitariu et al. (2016)). Recordings can be loaded and analyzed from six different629
file formats: Blackrock, Ripple, Plexon, Intan, NWB, and Tucker Davis Technologies. IN-Brainstorm630
is available on GitHub15 and its functionality is documented16. IN-Brainstorm does not include the631
latest spike sorting software Rossant et al. (2016); Yger et al. (2018); Chung et al. (2017); Jun et al.632
(2017b); Pachitariu et al. (2018); Hilgen et al. (2017)17 and it does not support any post-sorting633
analysis such as quality metric calculation, automated curation, or sorting output comparison.634

Outlook635

As it stands, spike sorting is still an open problem. No step in the spike sorting pipeline is completely636
solved and no spike sorter can be used for all applications. With SpikeInterface, researchers can637
quickly build, run, and evaluate many different spike sorting workflows on their specific datasets638
and applications, allowing them to determine which will work best for them. Once a researcher639
determines an ideal workflow for their specific problem, it is straightforward to share and re-use640
that workflow in other laboratories as the full provenance is automatically stored by SpikeInterface.641
We envision that many laboratories will use SpikeInterface to satisfy their spike sorting needs.642

Along with its applications to extracellular analysis, SpikeInterface is also a powerful tool for643
developers looking to create new spike sorting algorithms and analysis tools. Developers can644
test their methods using our efficient and comprehensive comparison functions. Once satisfied645
with their performance, developers can integrate their work into SpikeInterface, allowing them646
access to a large-community of new users and providing them with automatic file I/O for many647
popular extracellular dataset formats. For developers who work on projects that utilize spike sorting,648
SpikeInterface is useful out-of-the-box, providing more reliability and functionality than lab-specific649
scripts. We envision that many developers will be excited to use and integrate with SpikeInterface.650

Already, SpikeInterface is being used in a variety of applications. The file IO, preprocessing, and651
spike sorting capabilities of SpikeInterface are an integral part of SpikeForestMagland et al. (2020)652
which is an interactive website for benchmarking and tracking the accuracy of publicly available653
spike sorting algorithms. At present, this project includes ten spike sorting algorithms and more654
14https://sites.google.com/site/muftimahmud/codes15https://github.com/brainstorm-tools/brainstorm316https://neuroimage.usc.edu/brainstorm/e-phys/Introduction17IN-Brainstorm does include instructions on how to import data that has been spike sorted by a non-supported spike sorter.
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than 300 extracellular recordings with ground-truth firing information. SpikeInterface’s ability655
to read and write to a multitude of extracellular file formats is also being utilized by Neurodata656
Without Borders Teeters et al. (2015) in their nwb-conversion-tools package. We hope to continue657
integrating SpikeInterface into cutting-edge extracellular analysis frameworks.658
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Raw Formats Writable Reference Sorted Formats Writable Reference
Klusta Yes Rossant

et al.(2016)
Klusta Yes Rossant

et al.(2016)
Mountainsort Yes Jun et al.(2017a) Mountainsort Yes Jun et al.(2017a)

Phy∗ Yes Rossant
and Harris(2013)

Phy∗ Yes Rossant
and Harris(2013)

Kilosort/Kilosort2 No Pachitariu
et al.(2016);
Rossant
et al.(2014)

Kilosort/Kilosort2 No Pachitariu
et al.(2016);
Rossant
et al.(2014)

SpyKING Circus No Yger et al.(2018) SpyKING Circus Yes Yger et al.(2018)
Exdir Yes Dragly

et al.(2018)
Exdir Yes Dragly

et al.(2018)
MEArec Yes Buccino

and
Einevoll(2020)

MEArec Yes Buccino
and

Einevoll(2020)
Open Ephys No Siegle et al.(2017) Open Ephys No Siegle et al.(2017)

Neurodata WithoutBorders Yes Teeters
et al.(2015)

Neurodata WithoutBorders Yes Teeters
et al.(2015)

NIX Yes NIX (n.d.) NIX Yes NIX (n.d.)
Plexon No Plexon(n.d.) Plexon No Plexon(n.d.)
Neuralynx No Neuralynx(n.d.) Neuralynx No Neuralynx(n.d.)
SHYBRID Yes Wouters

et al.(2020)
SHYBRID Yes Wouters

et al.(2020)
Neuroscope Yes Hazan

et al.(2006)
Neuroscope Yes Hazan

et al.(2006)
SpikeGLX No Karsh(2016) HerdingSpikes2 Yes Hilgen

et al.(2017)
Intan No Intan (n.d.) JRCLUST No Jun et al.(2017b)
MCS H5 No MCS (n.d.) Wave clus No Chaure

et al.(2018)
Biocam HDF5 Yes Biocam(n.d.) Tridesclous No Garcia and

Pouzat(2015)
MEA1k Yes MEA1k(n.d.) NPZ (numpy zip) Yes N/A
MaxOne No MaxWell(n.d.)
Binary Yes N/A

Table 1. Currently available file formats in SpikeInterface and if they are writable. ∗The Phy writing method isimplemented in spiketoolkit as the export_to_phy function (all other writing methods are implemented in
spikeextractors ).
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Metric Description Reference
Signal-to-noise ratio The signal-to-noise ratio computed on unit templates. N/A

Firing rate The average firing rate over a time period. N/A
Presence ratio The fraction of a time period in which spikes are present. N/A
Amplitude Cutoff An estimate of the miss rate based on an amplitude histogram. N/A
Maximum drift The maximum change in spike position (computed as the cen-ter of mass of the energy of the first principal component score)throughout a recording.

N/A

Cumulative drift The cumulative change in spike position throughout a recording. N/A
ISI violations The rate of inter-spike-interval (ISI) refractory period violations. Hill et al.(2011)

Isolation Distance Radius of the smallest ellipsoid that contains all the spikes froma cluster and an equal number of spikes from other clusters (cen-tered on the specified cluster).
Harris
et al.(2001)

L-ratio Assuming that the distribution of spike distances from a clustercenter is multivariate normal, L-ratio is the average value of thetail distribution for non-member spikes of that cluster.
Schmitzer-
Torbert
and Redish(2004)

D-Prime The classification accuracy between two units based on lineardiscriminant analysis (LDA) Hill et al.(2011)
Nearest-neighbors A non-parametric estimate of unit contamination using nearest-neighbor classification. Chung

et al.(2017)
Silhouette score The ratio between cohesiveness of a cluster (distance betweenmember spikes) and its separation from other clusters (distanceto non-member spikes).

Rousseeuw(1987)
Table 2. Currently available quality metrics in Spikeinterface. Re-implemented by researchers at Allen Institutefor Brain and by the SpikeInterface team.
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Name Method Notes Reference
Klusta DB Python-based, semi-automatic, designed forlow channel count, dense probes. Rossant

et al.(2016)
Mountainsort4 DB Python-based, fully automatic, unique cluster-ing method (isosplit), designed for low channelcount, dense probes and tetrodes.

Chung
et al.(2017)

Kilosort TM MATLAB-based, GPU support, semi-automatedfinal curation. Pachitariu
et al.(2016)

Kilosort2 TM MATLAB-based, GPU support, semi-automatedfinal curation, designed to correct for drift. Pachitariu
et al.(2018)

SpyKING Circus TM Python-based, fast and scalable with CPUs, de-signed to correct for drift. Yger et al.(2018)
HerdingSpikes2 DB + SL Python-based, fast and scalable with CPUs,scales up to thousands of channels. Hilgen

et al.(2017)
Tridesclous TM Python-based, graphical user interface, GPUsupport, multi-platform Garcia and

Pouzat(2015)
IronClust DB + SL MATLAB-based, GPU support, designed to cor-rect for drift. Jun et al.(2020)
Wave clus TM Matlab-based, fully automatic, designed for sin-gle electrodes and tetrodes, multi-platform. Chaure

et al.(2018)
HDsort TM Matlab-based, fast and scalable, designed forlarge-scale, dense arrays. Diggelmann

et al.(2018)
Table 3. Currently available spike sorters in Spikeinterface. TM = Template Matching; SL = Spike Localisation;DB = Density-based clustering.

32 of 30


	Results
	Evaluating spike sorters on a simulated dataset

	Results
	Low-agreement units are mainly false positives
	Consensus units highly overlap with manually curated ones

	Materials and Methods
	Materials and Methods
	Overview of SpikeInterface
	SpikeExtractors


	Materials and Methods
	Overview of SpikeInterface
	SpikeToolkit


	Materials and Methods
	Overview of SpikeInterface
	SpikeSorters


	Materials and Methods
	Overview of SpikeInterface
	SpikeComparison


	Materials and Methods
	Overview of SpikeInterface
	SpikeWidgets


	Materials and Methods
	Building a spike sorting pipeline
	Using the Python API
	Using the spikely GUI


	Discussion
	Ensemble spike sorting

	Discussion
	Comparison to other frameworks

	Discussion
	Outlook


