920 research outputs found
Intramuscular Immunisation with Chlamydial Proteins Induces Chlamydia trachomatis Specific Ocular Antibodies.
BACKGROUND: Ocular infection with Chlamydia trachomatis can cause trachoma, which is the leading cause of blindness due to infection worldwide. Despite the large-scale implementation of trachoma control programmes in the majority of countries where trachoma is endemic, there remains a need for a vaccine. Since C. trachomatis infects the conjunctival epithelium and stimulates an immune response in the associated lymphoid tissue, vaccine regimens that enhance local antibody responses could be advantageous. In experimental infections of non-human primates (NHPs), antibody specificity to C. trachomatis antigens was found to change over the course of ocular infection. The appearance of major outer membrane protein (MOMP) specific antibodies correlated with a reduction in ocular chlamydial burden, while subsequent generation of antibodies specific for PmpD and Pgp3 correlated with C. trachomatis eradication. METHODS: We used a range of heterologous prime-boost vaccinations with DNA, Adenovirus, modified vaccinia Ankara (MVA) and protein vaccines based on the major outer membrane protein (MOMP) as an antigen, and investigated the effect of vaccine route, antigen and regimen on the induction of anti-chlamydial antibodies detectable in the ocular lavage fluid of mice. RESULTS: Three intramuscular vaccinations with recombinant protein adjuvanted with MF59 induced significantly greater levels of anti-MOMP ocular antibodies than the other regimens tested. Intranasal delivery of vaccines induced less IgG antibody in the eye than intramuscular delivery. The inclusion of the antigens PmpD and Pgp3, singly or in combination, induced ocular antigen-specific IgG antibodies, although the anti-PmpD antibody response was consistently lower and attenuated by combination with other antigens. CONCLUSIONS: If translatable to NHPs and/or humans, this investigation of the murine C. trachomatis specific ocular antibody response following vaccination provides a potential mouse model for the rapid and high throughput evaluation of future trachoma vaccines
Probe spectroscopy in an operating magneto-optical trap: the role of Raman transitions between discrete and continuum atomic states
We report on cw measurements of probe beam absorption and four-wave-mixing
spectra in a Rb magneto-optical trap taken while the trap is in
operation. The trapping beams are used as pump light. We concentrate on the
central feature of the spectra at small pump-probe detuning and attribute its
narrow resonant structures to the superposition of Raman transitions between
light-shifted sublevels of the ground atomic state and to atomic recoil
processes. These two contributions have different dependencies on trap
parameters and we show that the former is inhomogeneously broadened. The strong
dependence of the spectra on the probe-beam polarization indicates the
existence of large optical anisotropy of the cold-atom sample, which is
attributed to the recoil effects. We point out that the recoil-induced
resonances can be isolated from other contributions, making pump-probe
spectroscopy a highly sensitive diagnostic tool for atoms in a working MOT.Comment: 9 pages, 8 figure
The crystal structure of superoxide dismutase from Plasmodium falciparum
Background: Superoxide dismutases (SODs) are important enzymes in defence against oxidative stress. In Plasmodium falciparum, they may be expected to have special significance since part of the parasite life cycle is spent in red blood cells where the formation of reactive oxygen species is likely to be promoted by the products of haemoglobin breakdown. Thus, inhibitors of P. falciparum SODs have potential as anti-malarial compounds. As a step towards their development we have determined the crystal structure of the parasite's cytosolic iron superoxide dismutase. Results: The cytosolic iron superoxide dismutase from P. falciparum (PfFeSOD) has been overexpressed in E. coli in a catalytically active form. Its crystal structure has been solved by molecular replacement and refined against data extending to 2.5 angstrom resolution. The structure reveals a two-domain organisation and an iron centre in which the metal is coordinated by three histidines, an aspartate and a solvent molecule. Consistent with ultracentrifugation analysis the enzyme is a dimer in which a hydrogen bonding lattice links the two active centres. Conclusion: The tertiary structure of PfFeSOD is very similar to those of a number of other iron-and manganese-dependent superoxide dismutases, moreover the active site residues are conserved suggesting a common mechanism of action. Comparison of the dimer interfaces of PfFeSOD with the human manganese-dependent superoxide dismutase reveals a number of differences, which may underpin the design of parasite-selective superoxide dismutase inhibitors
Going higher in the First-order Quantifier Alternation Hierarchy on Words
We investigate the quantifier alternation hierarchy in first-order logic on
finite words. Levels in this hierarchy are defined by counting the number of
quantifier alternations in formulas. We prove that one can decide membership of
a regular language to the levels (boolean combination of
formulas having only 1 alternation) and (formulas having only 2
alternations beginning with an existential block). Our proof works by
considering a deeper problem, called separation, which, once solved for lower
levels, allows us to solve membership for higher levels
Delineation of a unique protein-protein interaction site on the surface of the estrogen receptor
Recent studies have identified a series of estrogen receptor (ER)interacting peptides that recognize sites that are distinct from the classic coregulator recruitment (AF2) region. Here, we report the structural and functional characterization of an ER alpha-specific peptide that binds to the liganded receptor in an AF2-independent manner. The 2-angstrom crystal structure of the ER/peptide complex reveals a binding site that is centered on a shallow depression on the beta-hairpin face of the ligand-binding domain. The peptide binds in an unusual extended conformation and makes multiple contacts with the ligand-binding domain. The location and architecture of the binding site provides an insight into the peptide's ER subtype specificity and ligand interaction preferences. In vivo, an engineered coactivator containing the peptide motif is able to strongly enhance the transcriptional activity of liganded ER alpha, particularly in the presence of 4-hydroxytamoxifen. Furthermore, disruption of this binding surface alters ER's response to the coregulator TIF2. Together, these results indicate that this previously unknown interaction site represents a bona fide control surface involved in regulating receptor activity
On the State Complexity of Partial Derivative Automata For Regular Expressions with Intersection
Extended regular expressions (with complement and intersection) are used in many applications due to their succinctness. In particular, regular expressions extended with intersection only (also called semi-extended) can already be exponentially smaller than standard regular expressions or equivalent nondeterministic finite automata (NFA). For practical purposes it is important to study the average behaviour of conversions between these models. In this paper, we focus on the conversion of regular expressions with intersection to nondeterministic finite automata, using partial derivatives and the notion of support. First, we give a tight upper bound of 2O(n) for the worst-case number of states of the resulting partial derivative automaton, where n is the size of the expression. Using the framework of analytic combinatorics, we then establish an upper bound of (1.056 + o(1))n for its asymptotic average-state complexity, which is significantly smaller than the one for the worst case. (c) IFIP International Federation for Information Processing 2016
Position Automaton Construction for Regular Expressions with Intersection
Positions and derivatives are two essential notions in the conversion methods from regular expressions to equivalent finite automata. Partial derivative based methods have recently been extended to regular expressions with intersection. In this paper, we present a position automaton construction for those expressions. This construction generalizes the notion of position making it compatible with intersection. The resulting automaton is homogeneous and has the partial derivative automaton as its quotient
Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).
Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
An Automated System for Hydroxide Catalysis Bonding of Precision-Aligned Optical Systems
Precision-aligned, robust, ultra-stable optical assemblies are required in an increasing number of space-based applications such as fundamental science, metrology and geodesy. Hydroxide catalysis bonding is a proven, glue-free, technology for building such optical systems from materials such as ULE, Zerodur and fused silica. Hydroxide catalysis bonded optical systems have flown in missions such as GP-B and LISA Pathfinder achieving picometer path-length stability and microradian component stability over full mission lifetime. Component alignment and bonding was previously a largely manual process that required skilled operators and significant time. We have recently automated most of the alignment and bonding steps with the goals of improving overall precision, speed and reliability. Positioning and bonding of an optical component to within 4 microns and 10 microradians of a target position and alignment can now be reliably completed within half an hour, compared to the many hours typically taken previously. The key new features of this system are an interferometer that monitors the parallelism and separation of the surfaces to be bonded and a precision multi-axis manipulator that can optimise component alignment as it brings it down to the point of bonding. We present a description of the system and a summary of the alignment results obtained in a series of 9 test bonds. We also show how this system is being developed for integration into a precision optical manufacturing facility for assembly of large optical systems
- …
