research

Probe spectroscopy in an operating magneto-optical trap: the role of Raman transitions between discrete and continuum atomic states

Abstract

We report on cw measurements of probe beam absorption and four-wave-mixing spectra in a 85^{85}Rb magneto-optical trap taken while the trap is in operation. The trapping beams are used as pump light. We concentrate on the central feature of the spectra at small pump-probe detuning and attribute its narrow resonant structures to the superposition of Raman transitions between light-shifted sublevels of the ground atomic state and to atomic recoil processes. These two contributions have different dependencies on trap parameters and we show that the former is inhomogeneously broadened. The strong dependence of the spectra on the probe-beam polarization indicates the existence of large optical anisotropy of the cold-atom sample, which is attributed to the recoil effects. We point out that the recoil-induced resonances can be isolated from other contributions, making pump-probe spectroscopy a highly sensitive diagnostic tool for atoms in a working MOT.Comment: 9 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020