13 research outputs found

    Antibiotic treatment regimes as a driver of the global population dynamics of a major gonorrhea lineage

    Get PDF
    The Neisseria gonorrhoeae multilocus sequence type (ST) 1901 is among the lineages most commonly associated with treatment failure. Here, we analyze a global collection of ST-1901 genomes to shed light on the emergence and spread of alleles associated with reduced susceptibility to extended-spectrum cephalosporins (ESCs). The genetic diversity of ST-1901 falls into a minor and a major clade, both of which were inferred to have originated in East Asia. The dispersal of the major clade from Asia happened in two separate waves expanding from ∼1987 and 1996, respectively. Both waves first reached North America, and from there spread to Europe and Oceania, with multiple secondary reintroductions to Asia. The ancestor of the second wave acquired the penA 34.001 allele, which significantly reduces susceptibility to ESCs. Our results suggest that the acquisition of this allele granted the second wave a fitness advantage at a time when ESCs became the key drug class used to treat gonorrhea. Following its establishment globally, the lineage has served as a reservoir for the repeated emergence of clones fully resistant to the ESC ceftriaxone, an essential drug for effective treatment of gonorrhea. We infer that the effective population sizes of both clades went into decline as treatment schemes shifted from fluoroquinolones via ESC monotherapy to dual therapy with ceftriaxone and azithromycin in Europe and the United States. Despite the inferred recent population size decline, the short evolutionary path from the penA 34.001 allele to alleles providing full ceftriaxone resistance is a cause of concern

    Rapid phenotypic evolution in multidrug-resistant Klebsiella pneumoniae hospital outbreak strains

    Get PDF
    L. v. D., L. P. S., X. D., H. W. and F. B. acknowledge financial support from the Newton Trust UK–China NSFC initiative (grants MR/P007597/1 and 81661138006). F. B. acknowledges support from the BBSRC GCRF scheme. H. W. additionally acknowledges support from China NSFC grant 81625014. H. C. acknowledges financial support from a 111 Talent Discipline Planning of PKUPH award for a 1-year visit at University College London. Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files. Nine supplementary tables and fifteen supplementary figures are available with the online version of this article.Peer reviewedPublisher PD

    Sudden emergence of a Neisseria gonorrhoeae clade with reduced susceptibility to extended-spectrum cephalosporins, Norway

    Get PDF
    Neisseria gonorrhoeae multilocus sequence type (ST)-7827 emerged in a dramatic fashion in Norway in the period 2016–2018. Here, we aim to shed light on the provenance and expansion of this ST. ST-7827 was found to be polyphyletic, but the majority of members belonged to a monophyletic clade we termed PopPUNK cluster 7827 (PC-7827). In Norway, both PC-7827 and ST-7827 isolates were almost exclusively isolated from men. Phylogeographical analyses demonstrated an Asian origin of the genogroup, with multiple inferred exports to Europe and the USA. The genogroup was uniformly resistant to fluoroquinolones, and associated with reduced susceptibility to both azithromycin and the extended-spectrum cephalosporins (ESCs) cefixime and ceftriaxone. From a genetic background including the penA allele 13.001, associated with reduced ESC susceptibility, we identified repeated events of acquisition of porB alleles associated with further reduction in ceftriaxone susceptibility. Transmission of the strain was significantly reduced in Norway in 2019, but our results indicate the existence of a recently established global reservoir. The worrisome drug-resistance profile and rapid emergence of PC-7827 calls for close monitoring of the situation

    Detection of a historic reservoir of bedaquiline/clofazimine resistance-associated variants in Mycobacterium tuberculosis

    Get PDF
    Background: Drug resistance in tuberculosis (TB) poses a major ongoing challenge to public health. The recent inclusion of bedaquiline into TB drug regimens has improved treatment outcomes, but this advance is threatened by the emergence of strains of Mycobacterium tuberculosis (Mtb) resistant to bedaquiline. Clinical bedaquiline resistance is most frequently conferred by off-target resistance-associated variants (RAVs) in the mmpR5 gene (Rv0678), the regulator of an efflux pump, which can also confer cross-resistance to clofazimine, another TB drug. Methods: We compiled a dataset of 3682 Mtb genomes, including 180 carrying variants in mmpR5, and its immediate background (i.e. mmpR5 promoter and adjacent mmpL5 gene), that have been associated to borderline (henceforth intermediate) or confirmed resistance to bedaquiline. We characterised the occurrence of all nonsynonymous mutations in mmpR5 in this dataset and estimated, using time-resolved phylogenetic methods, the age of their emergence. Results: We identified eight cases where RAVs were present in the genomes of strains collected prior to the use of bedaquiline in TB treatment regimes. Phylogenetic reconstruction points to multiple emergence events and circulation of RAVs in mmpR5, some estimated to predate the introduction of bedaquiline. However, epistatic interactions can complicate bedaquiline drug-susceptibility prediction from genetic sequence data. Indeed, in one clade, Ile67fs (a RAV when considered in isolation) was estimated to have emerged prior to the antibiotic era, together with a resistance reverting mmpL5 mutation. Conclusions: The presence of a pre-existing reservoir of Mtb strains carrying bedaquiline RAVs prior to its clinical use augments the need for rapid drug susceptibility testing and individualised regimen selection to safeguard the use of bedaquiline in TB care and control

    Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes.

    Get PDF
    INTRODUCTION: Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. RESULTS: We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. CONCLUSION: Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study

    Characterizing the virome of Ixodes ricinus ticks from northern Europe

    Get PDF
    RNA viruses are abundant infectious agents and present in all domains of life. Arthropods, including ticks, are well known as vectors of many viruses of concern for human and animal health. Despite their obvious importance, the extent and structure of viral diversity in ticks is still poorly understood, particularly in Europe. Using a bulk RNA-sequencing approach that captures the complete transcriptome, we analysed the virome of the most common tick in Europe - Ixodes ricinus. In total, RNA sequencing was performed on six libraries consisting of 33 I. ricinus nymphs and adults sampled in Norway. Despite the small number of animals surveyed, our virus identification pipeline revealed nine diverse and novel viral species, phylogenetically positioned within four different viral groups bunyaviruses, luteoviruses, mononegavirales and partitiviruses - and sometimes characterized by extensive genetic diversity including a potentially novel genus of bunyaviruses. This work sheds new light on the virus diversity in I. ricinus, expands our knowledge of potential host/vector-associations and tick-transmitted viruses within several viral groups, and pushes the latitudinal limit where it is likely to find tick-associated viruses. Notably, our phylogenetic analysis revealed the presence of tick-specific virus clades that span multiple continents, highlighting the role of ticks as important virus reservoirs

    Re-visiting the evolution, dispersal and epidemiology of Zika virus in Asia

    Get PDF
    Based on serological evidence and viral isolation, Zika virus (ZIKV) has circulated for many years relatively benignly in a sylvatic cycle in Africa and an urban cycle in South East Asia (SEA). With the recent availability of limited but novel Indian ZIKV sequences to add to the plethora of SEA sequences, we traced the phylogenetic history and spatio-temporal dispersal pattern of ZIKV in Asia prior to its explosive emergence in the Pacific region and the Americas. These analyses demonstrated that the introduction and dispersal of ZIKV on the Pacific islands were preceded by an extended period of relatively silent transmission in SEA, enabling the virus to expand geographically and evolve adaptively before its unanticipated introduction to immunologically naive populations on the Pacific islands and in the Americas. Our findings reveal new features of the evolution and dispersal of this intriguing virus and may benefit future disease control strategies

    Whole-Genome Characterization of Epidemic Neisseria meningitidis Serogroup C and Resurgence of Serogroup W, Niger, 2015.

    No full text
    International audienceIn 2015, Niger reported the largest epidemic of Neisseria meningitidis serogroup C (NmC) meningitis in sub-Saharan Africa. The NmC epidemic coincided with serogroup W (NmW) cases during the epidemic season, resulting in a total of 9,367 meningococcal cases through June 2015. To clarify the phylogenetic association, genetic evolution, and antibiotic determinants of the meningococcal strains in Niger, we sequenced the genomes of 102 isolates from this epidemic, comprising 81 NmC and 21 NmW isolates. The genomes of 82 isolates were completed, and all 102 were included in the analysis. All NmC isolates had sequence type 10217, which caused the outbreaks in Nigeria during 2013-2014 and for which a clonal complex has not yet been defined. The NmC isolates from Niger were substantially different from other NmC isolates collected globally. All NmW isolates belonged to clonal complex 11 and were closely related to the isolates causing recent outbreaks in Africa
    corecore