977 research outputs found

    Characterization of Lignin Structural Variability and the Associated Application In Genome Wide Association Studies

    Get PDF
    Poplar (Populus sp.) is a promising biofuel feedstock due to advantageous features such as fast growth, the ability to grow on marginal land, and relatively low lignin content. However, there is tremendous variability associated with the composition of biomass. Understanding this variability, especially in lignin, is crucial to developing and implementing financially viable, integrated biorefineries. Although lignin is typically described as being comprised of three primary monolignols (syringyl, guaiacyl, p-hydroxyphenyl), it is a highly irregular biopolymer that can incorporate non-canonical monolignols. It is also connected by a variety of interunit linkages, adding to its complexity. Secondary cell wall formation requires the coordination of many metabolic pathways. Additionally, complex traits such as lignin are highly polygenic. While there are several methods to analyze lignin structure, 2D HSQC NMR is a powerful analytical tool that elucidates many structural traits of lignin simultaneously. This work examined the lignin structure of 409 unique Populus trichocarpa genotypes via HSQC NMR. Twelve lignin phenotypes were subsequently utilized for a genome-wide association study (GWAS) – a powerful approach for identifying loci contributing to natural phenotypic diversity. This deep phenotyping enabled GWAS to identify 756 candidate genes associated with at least one lignin phenotype. Many of these candidate genes have not been previously reported to be associated with lignin or cell wall biosynthesis. These results provide a valuable resource for gaining insights into the molecular mechanisms of lignin biosynthesis and offer new targets for future genetic improvement in poplar

    A computationally engineered RAS rheostat reveals RAS-ERK signaling dynamics.

    Get PDF
    Synthetic protein switches controlled with user-defined inputs are powerful tools for studying and controlling dynamic cellular processes. To date, these approaches have relied primarily on intermolecular regulation. Here we report a computationally guided framework for engineering intramolecular regulation of protein function. We utilize this framework to develop chemically inducible activator of RAS (CIAR), a single-component RAS rheostat that directly activates endogenous RAS in response to a small molecule. Using CIAR, we show that direct RAS activation elicits markedly different RAS-ERK signaling dynamics from growth factor stimulation, and that these dynamics differ among cell types. We also found that the clinically approved RAF inhibitor vemurafenib potently primes cells to respond to direct wild-type RAS activation. These results demonstrate the utility of CIAR for quantitatively interrogating RAS signaling. Finally, we demonstrate the general utility of our approach in design of intramolecularly regulated protein tools by applying it to the Rho family of guanine nucleotide exchange factors

    Methods for Managing Human–Deer Conflicts in Urban, Suburban, and Exurban Areas

    Get PDF
    This monograph identifies challenges and benefits associated with many human–deer conflict mitigation actions as well as methods to monitor the response of deer populations to management actions. Deer exploit urban, suburban, and exurban areas where human populations provide anthropogenic attractants, either intentionally or inadvertently, which often leads to human–deer conflicts. Mitigating actions have varying degrees of efficacy and may not be effective or accepted in every situation. Wildlife and municipal managers must work together to seek methods to reduce attractants, mitigate conflicts, and perpetuate the conservation of wildlife species that adds to the appreciation of nature in our lives.https://digitalcommons.usu.edu/hwi_monographs/1001/thumbnail.jp

    Enhancing the efficacy of glycolytic blockade in cancer cells via RAD51 inhibition.

    Get PDF
    Targeting the early steps of the glycolysis pathway in cancers is a well-established therapeutic strategy; however, the doses required to elicit a therapeutic effect on the cancer can be toxic to the patient. Consequently, numerous preclinical and clinical studies have combined glycolytic blockade with other therapies. However, most of these other therapies do not specifically target cancer cells, and thus adversely affect normal tissue. Here we first show that a diverse number of cancer models - spontaneous, patient-derived xenografted tumor samples, and xenografted human cancer cells - can be efficiently targeted by 2-deoxy-D-Glucose (2DG), a well-known glycolytic inhibitor. Next, we tested the cancer-cell specificity of a therapeutic compound using the MEC1 cell line, a chronic lymphocytic leukemia (CLL) cell line that expresses activation induced cytidine deaminase (AID). We show that MEC1 cells, are susceptible to 4,4\u27-Diisothiocyano-2,2\u27-stilbenedisulfonic acid (DIDS), a specific RAD51 inhibitor. We then combine 2DG and DIDS, each at a lower dose and demonstrate that this combination is more efficacious than fludarabine, the current standard- of- care treatment for CLL. This suggests that the therapeutic blockade of glycolysis together with the therapeutic inhibition of RAD51-dependent homologous recombination can be a potentially beneficial combination for targeting AID positive cancer cells with minimal adverse effects on normal tissue. IMPLICATIONS: Combination therapy targeting glycolysis and specific RAD51 function shows increased efficacy as compared to standard of care treatments in leukemias

    RAMPART : a model for a regulatory-ready academic-led phase III trial in the adjuvant renal cell carcinoma setting

    Get PDF
    AstraZeneca LP have provided an educational grant for the trial and free of charge durvalumab and tremelimumab. A small grant is also provided by Kidney Cancer UK. MRC CTU at UCL provides funding for staff working on the trial.The development of therapeutics in oncology is a highly active research area for the pharmaceutical and biotechnology industries, but also has a strong academic base. Many new agents have been developed in recent years, most with specific biological targets. This has mandated the need to look at different ways to streamline the evaluation of new agents. One solution has been the development of adaptive trial designs that allow the evaluation of multiple agents, concentrating on the most promising agents while screening out those which are unlikely to benefit patients. Another way forward has been the growth of partnerships between academia and industry with the shared goal of designing and conducting high quality clinical trials which answer important clinical questions as efficiently as possible. The RAMPART trial (NCT03288532) brings together both of these processes in an attempt to improve outcomes for patients with locally advanced renal cell carcinoma (RCC), where no globally acceptable adjuvant strategy after nephrectomy currently exist. RAMPART is led by the MRC CTU at University College London (UCL), in collaboration with other international academic groups and industry. We aim to facilitate the use of data from RAMPART, (dependent on outcomes), for a future regulatory submission that will extend the license of the agents being investigated. We share our experience in order to lay the foundations for an effective trial design and conduct framework and to guide others who may be considering similar collaborations.Publisher PDFPeer reviewe

    RAMPART : a phase III multi-arm multi-stage trial of adjuvant checkpoint inhibitors in patients with resected primary renal cell carcinoma (RCC) at high or intermediate risk of relapse

    Get PDF
    AstraZeneca LP have provided an educational grant for the trial and free of charge durvalumab and tremelimumab. A small grant is also provided by Kidney Cancer UK. MRC CTU at UCL also provides funding for staff working on the trial. The TransRAMPART sample collection is being funded by a Prospective Sample Collection award from Cancer Research UK.Background 20–60% of patients with initially locally advanced Renal Cell Carcinoma (RCC) develop metastatic disease despite optimal surgical excision. Adjuvant strategies have been tested in RCC including cytokines, radiotherapy, hormones and oral tyrosine-kinase inhibitors (TKIs), with limited success. The predominant global standard-of-care after nephrectomy remains active monitoring. Immune checkpoint inhibitors (ICIs) are effective in the treatment of metastatic RCC; RAMPART will investigate these agents in the adjuvant setting. Methods/design RAMPART is an international, UK-led trial investigating the addition of ICIs after nephrectomy in patients with resected locally advanced RCC. RAMPART is a multi-arm multi-stage (MAMS) platform trial, upon which additional research questions may be addressed over time. The target population is patients with histologically proven resected locally advanced RCC (clear cell and non-clear cell histological subtypes), with no residual macroscopic disease, who are at high or intermediate risk of relapse (Leibovich score 3–11). Patients with fully resected synchronous ipsilateral adrenal metastases are included. Participants are randomly assigned (3,2:2) to Arm A - active monitoring (no placebo) for one year, Arm B - durvalumab (PD-L1 inhibitor) 4-weekly for one year; or Arm C - combination therapy with durvalumab 4-weekly for one year plus two doses of tremelimumab (CTLA-4 inhibitor) at day 1 of the first two 4-weekly cycles. The co-primary outcomes are disease-free-survival (DFS) and overall survival (OS). Secondary outcomes include safety, metastasis-free survival, RCC specific survival, quality of life, and patient and clinician preferences. Tumour tissue, plasma and urine are collected for molecular analysis (TransRAMPART).Publisher PDFPeer reviewe

    RAMPART: A phase III multi-arm multi-stage trial of adjuvant checkpoint inhibitors in patients with resected primary renal cell carcinoma (RCC) at high or intermediate risk of relapse

    Get PDF
    Background: 20–60% of patients with initially locally advanced Renal Cell Carcinoma (RCC) develop metastatic disease despite optimal surgical excision. Adjuvant strategies have been tested in RCC including cytokines, radiotherapy, hormones and oral tyrosine-kinase inhibitors (TKIs), with limited success. The predominant global standard-of-care after nephrectomy remains active monitoring. Immune checkpoint inhibitors (ICIs) are effective in the treatment of metastatic RCC; RAMPART will investigate these agents in the adjuvant setting. // Methods/design: RAMPART is an international, UK-led trial investigating the addition of ICIs after nephrectomy in patients with resected locally advanced RCC. RAMPART is a multi-arm multi-stage (MAMS) platform trial, upon which additional research questions may be addressed over time. The target population is patients with histologically proven resected locally advanced RCC (clear cell and non-clear cell histological subtypes), with no residual macroscopic disease, who are at high or intermediate risk of relapse (Leibovich score 3–11). Patients with fully resected synchronous ipsilateral adrenal metastases are included. Participants are randomly assigned (3,2:2) to Arm A - active monitoring (no placebo) for one year, Arm B - durvalumab (PD-L1 inhibitor) 4-weekly for one year; or Arm C - combination therapy with durvalumab 4-weekly for one year plus two doses of tremelimumab (CTLA-4 inhibitor) at day 1 of the first two 4-weekly cycles. The co-primary outcomes are disease-free-survival (DFS) and overall survival (OS). Secondary outcomes include safety, metastasis-free survival, RCC specific survival, quality of life, and patient and clinician preferences. Tumour tissue, plasma and urine are collected for molecular analysis (TransRAMPART)

    Potential causal association between gut microbiome and posttraumatic stress disorder

    Get PDF
    Background: The causal effects of gut microbiome and the development of posttraumatic stress disorder (PTSD) are still unknown. This study aimed to clarify their potential causal association using mendelian randomization (MR). Methods: The summary-level statistics for gut microbiome were retrieved from a genome-wide association study (GWAS) of the MiBioGen consortium. As to PTSD, the Freeze 2 datasets were originated from the Psychiatric Genomics Consortium Posttraumatic Stress Disorder Working Group (PGC-PTSD), and the replicated datasets were obtained from FinnGen consortium. Single nucleotide polymorphisms meeting MR assumptions were selected as instrumental variables. The inverse variance weighting (IVW) method was employed as the main approach, supplemented by sensitivity analyses to evaluate potential pleiotropy and heterogeneity and ensure the robustness of the MR results. We also performed reverse MR analyses to explore PTSD’s causal effects on the relative abundances of specific features of the gut microbiome. Results: In Freeze 2 datasets from PGC-PTSD, eight bacterial traits revealed a potential causal association between gut microbiome and PTSD (IVW, all P < 0.05). In addition, Genus.Dorea and genus.Sellimonas were replicated in FinnGen datasets, in which eight bacterial traits revealed a potential causal association between gut microbiome and the occurrence of PTSD. The heterogeneity and pleiotropy analyses further supported the robustness of the IVW findings, providing additional evidence for their reliability. Conclusion: Our study provides the potential causal impact of gut microbiomes on the development of PTSD, shedding new light on the understanding of the dysfunctional gut-brain axis in this disorder. Our findings present novel evidence and call for investigations to confirm the association between their links, as well as to illuminate the underlying mechanisms

    Measurement of the tau lepton lifetime

    Get PDF
    The mean lifetime of the tau lepton is measured in a sample of 25700 tau pairs collected in 1992 with the ALEPH detector at LEP. A new analysis of the 1-1 topology events is introduced. In this analysis, the dependence of the impact parameter sum distribution on the daughter track momenta is taken into account, yielding improved precision compared to other impact parameter sum methods. Three other analyses of the one- and three-prong tau decays are updated with increased statistics. The measured lifetime is 293.5+/-3.1+/-1.7 fs. Including previous (1989-1991) ALEPH measurements, the combined tau lifetime is 293.7+/-2.7+/-1.6 fs
    • …
    corecore