99 research outputs found

    Heat Fluxes of the Indian Ocean from a global Eddy-Resolving Model

    Get PDF
    The output of the global eddy‐resolving ¼° ocean model of Semtner/Chervin (run by the Naval Postgraduate School, Monterey, California) has been used to study the oceanic temperature and heat flux in the Indian Ocean. The meridional heat flux in the northern Indian Ocean is at the low end of the observed values. A vertical overturning cell in the upper 500 m is the main contributor to the annual mean meridional heat flux across 5°S, whereas the horizontal gyre circulation, confined to the upper 500 m, dominates north of the equator. The change of monsoon winds is manifested in a reversal of the meridional circulation throughout the whole water column. The most notable result is a strong linear relationship of the meridional temperature flux and the zonal wind stress component north of 20°S. The model's Pacific‐Indian Ocean throughflow across the section at 120°E accounts for −8.8±5.1 Sv (1 Sv≡106 m3 s−1). A strong interannual variability during the model run of 3 years shows a maximum range of 12 Sv in January/February and a minimum during March through June. The inflow from the Pacific into the Indian Ocean results in a total annual mean temperature flux of −0.9 PW (1 PW≡1015 W). In the model the temperature flux from the Pacific through the Indian Ocean to the south dominates in comparison with the input of solar heat from the northern Indian Ocean

    Tumor collagenase stimulatory factor (TCSF) expression and localization in human lung and breast cancers.

    Full text link
    Tumor cell-derived collagenase stimulatory factor (TCSF) stimulates in vitro the biosynthesis of various matrix metalloproteinases involved in tumor invasion, such as interstitial collagenase, gelatinase A, and stromelysin 1. The expression of TCSF mRNAs was studied in vivo, using in situ hybridization and Northern blotting analysis, in seven normal tissues and in 22 squamous cell carcinomas of the lung, and in seven benign proliferations and in 22 ductal carcinomas of the mammary gland. By in situ hybridization, TCSF mRNAs were detected in 40 of 44 carcinomas, in pre-invasive and invasive cancer cells of both lung and breast cancers. TCSF mRNAs and gelatinase A mRNAs were both visualized in the same areas in serial sections in breast cancers, and were expressed by different cells, tumor cells, and fibroblasts. The histological results were confirmed by Northern blot analysis, which showed a higher expression of TCSF mRNAs in cancers than in benign and normal tissues. These observations support the hypothesis that TCSF is an important factor in lung and breast tumor progression

    Synthetic emmprin peptides with chitobiose substitution stimulate MMP-2 production by fibroblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emmprin, a glycoprotein containing two Ig domains, is enriched on tumor cell surfaces and stimulates matrix metalloproteinase (MMP) production by adjacent stromal cells. Its first Ig domain (ECI) contains the biologically active site. The dependence of emmprin activity on N-glycosylation is controversial. We investigated whether synthetic ECI with the shortest sugar is functionally active.</p> <p>Methods</p> <p>The whole ECI peptides carrying sugar chains, a chitobiose unit or N-linked core pentasaccharide, were synthesized by the thioester method and added to fibroblasts to examine whether they stimulate MMP-2 production.</p> <p>Results</p> <p>ECI carrying a chitobiose unit, ECI-(GlcNAc) <sub>2</sub>, but not ECI without a chitobiose unit or the chitobiose unit alone, dose-dependently stimulated MMP-2 production by fibroblasts. ECI with longer chitobiose units, ECI-[(Man)<sub>3</sub>(GlcNAc)<sub>2</sub>], also stimulated MMP-2 production, but the extent of its stimulation was lower than that of ECI-(GlcNAc)<sub>2</sub>.</p> <p>Conclusions</p> <p>Our results indicate that ECI can mimic emmprin activity when substituted with chitobiose, the disaccharide with which N-glycosylation starts.</p

    Managing risk, changing aspirations and household dynamics: implications for wellbeing and adaptation in semi-arid Africa and India

    Get PDF
    Semi-arid regions across Africa and Asia are characterized by rapidly changing biophysical regimes, structural vulnerabilities, and increasing livelihood precarity. Gender, class, and caste/ethnic identities and relationships, and the specific social, economic and political power, roles and responsibilities they entail, shape the choices and decisions open to individuals and households in managing the risks they face. Unpacking the multiple, intersecting inequalities confronting rural populations in these climate hotspots is therefore vital to understand how risk can be managed in a way that supports effective, inclusive, and sustainable local adaptation. Drawing on empirical evidence from six countries, generated through a mixed methods approach, we examine how changes in household dynamics, structure, and aspirations, shape risk management with implications for household well-being, adaptive capacity, and ultimately sustainable development. The ability of individuals within households, differentiated by age, marital status, or education, to manipulate the very structure of the household and the material and social resources it offers, differentiates risk management strategies such as livelihood diversification, migration, changing agricultural practices and leveraging social support. Our evidence suggests that while greater risks can drive conflictive behavior within households, with women often reporting lower subjective wellbeing, new forms of cooperative behavior are also emerging, especially in peri-urban spaces. Through this study, we identify entry points into enabling sustainable and inclusive adaptation behavior, emphasizing that interventions should work for both women and men by challenging inequitable social and gender norms and renegotiating the domains of work and cooperation to maintain overall household wellbeing

    Mudança organizacional: uma abordagem preliminar

    Full text link
    corecore