34 research outputs found
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST/AFTA
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST/AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) cofigurations. We discuss why the lenslet array based IFS is selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to further suppress star light introduced speckles. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST/AFTA
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a prototype lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey TelescopeAstrophysics Focused Telescope Assets (WFIRSTAFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC). We will present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the compatibility to upgrade from the current 1k x 1k detector array to 4k x 4k detector array. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed
Metabolic Evaluation of Epilepsy: A Diagnostic Algorithm With Focus on Treatable Conditions
Although inborn errors of metabolism do not represent the most common cause of seizures, their early identification is of utmost importance, since many will require therapeutic measures beyond that of common anti-epileptic drugs, either in order to control seizures, or to decrease the risk of neurodegeneration. We translate the currently-known literature on metabolic etiologies of epilepsy (268 inborn errors of metabolism belonging to 21 categories, with 74 treatable errors), into a 2-tiered diagnostic algorithm, with the first-tier comprising accessible, affordable, and less invasive screening tests in urine and blood, with the potential to identify the majority of treatable conditions, while the second-tier tests are ordered based on individual clinical signs and symptoms. This resource aims to support the pediatrician, neurologist, biochemical, and clinical geneticists in early identification of treatable inborn errors of metabolism in a child with seizures, allowing for timely initiation of targeted therapy with the potential to improve outcomes
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 Micron Spectrum of the Planetary-Mass Companion VHS 1256-1257 b
We present the highest fidelity spectrum to date of a planetary-mass object.
VHS 1256 b is a 20 M widely separated (8\arcsec, a =
150 au), young, planetary-mass companion that shares photometric colors and
spectroscopic features with the directly imaged exoplanets HR 8799 c, d, and e.
As an L-to-T transition object, VHS 1256 b exists along the region of the
color-magnitude diagram where substellar atmospheres transition from cloudy to
clear. We observed VHS 1256~b with \textit{JWST}'s NIRSpec IFU and MIRI MRS
modes for coverage from 1 m to 20 m at resolutions of 1,000 -
3,700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium
are observed in several portions of the \textit{JWST} spectrum based on
comparisons from template brown dwarf spectra, molecular opacities, and
atmospheric models. The spectral shape of VHS 1256 b is influenced by
disequilibrium chemistry and clouds. We directly detect silicate clouds, the
first such detection reported for a planetary-mass companion.Comment: Accepted ApJL Iterations of spectra reduced by the ERS team are
hosted at this link:
https://github.com/bemiles/JWST_VHS1256b_Reduction/tree/main/reduced_spectr
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems IV: NIRISS Aperture Masking Interferometry Performance and Lessons Learned
We present a performance analysis for the aperture masking interferometry
(AMI) mode on board the James Webb Space Telescope Near Infrared Imager and
Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables,
AMI accesses inner working angles down to and even within the classical
diffraction limit. The scientific potential of this mode has recently been
demonstrated by the Early Release Science (ERS) 1386 program with a deep search
for close-in companions in the HIP 65426 exoplanetary system. As part of ERS
1386, we use the same dataset to explore the random, static, and calibration
errors of NIRISS AMI observables. We compare the observed noise properties and
achievable contrast to theoretical predictions. We explore possible sources of
calibration errors, and show that differences in charge migration between the
observations of HIP 65426 and point-spread function calibration stars can
account for the achieved contrast curves. Lastly, we use self-calibration tests
to demonstrate that with adequate calibration, NIRISS AMI can reach contrast
levels of mag. These tests lead us to observation planning
recommendations and strongly motivate future studies aimed at producing
sophisticated calibration strategies taking these systematic effects into
account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI,
with sensitivity to significantly colder, lower mass exoplanets than
ground-based setups at orbital separations inaccessible to JWST coronagraphy.Comment: 20 pages, 12 figures, submitted to AAS Journal
The \textit{JWST} Early Release Science Program for Direct Observations of Exoplanetary Systems III: Aperture Masking Interferometric Observations of the star HIP\,65426 at
We present aperture masking interferometry (AMI) observations of the star HIP
65426 at as a part of the \textit{JWST} Direct Imaging Early
Release Science (ERS) program obtained using the Near Infrared Imager and
Slitless Spectrograph (NIRISS) instrument. This mode provides access to very
small inner working angles (even separations slightly below the Michelson limit
of for an interferometer), which are inaccessible with the
classical inner working angles of the \textit{JWST} coronagraphs. When combined
with \textit{JWST}'s unprecedented infrared sensitivity, this mode has the
potential to probe a new portion of parameter space across a wide array of
astronomical observations. Using this mode, we are able to achieve a contrast
of \,mag relative to the host star at a separation
of {\sim}0.07\arcsec but detect no additional companions interior to the
known companion HIP\,65426\,b. Our observations thus rule out companions more
massive than 10{-}12\,\rm{M\textsubscript{Jup}} at separations
from HIP\,65426, a region out of reach of ground or
space-based coronagraphic imaging. These observations confirm that the AMI mode
on \textit{JWST} is sensitive to planetary mass companions orbiting at the
water frost line, even for more distant stars at 100\,pc. This result
will allow the planning and successful execution of future observations to
probe the inner regions of nearby stellar systems, opening essentially
unexplored parameter space.Comment: 15 pages, 9 figures, submitted to ApJ Letter
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems V: Do Self-Consistent Atmospheric Models Represent JWST Spectra? A Showcase With VHS 1256 b
The unprecedented medium-resolution (R~1500-3500) near- and mid-infrared
(1-18um) spectrum provided by JWST for the young (140+/-20Myr) low-mass
(12-20MJup) L-T transition (L7) companion VHS1256b gives access to a catalogue
of molecular absorptions. In this study, we present a comprehensive analysis of
this dataset utilizing a forward modelling approach, applying our Bayesian
framework, ForMoSA. We explore five distinct atmospheric models to assess their
performance in estimating key atmospheric parameters: Teff, log(g), [M/H], C/O,
gamma, fsed, and R. Our findings reveal that each parameter's estimate is
significantly influenced by factors such as the wavelength range considered and
the model chosen for the fit. This is attributed to systematic errors in the
models and their challenges in accurately replicating the complex atmospheric
structure of VHS1256b, notably the complexity of its clouds and dust
distribution. To propagate the impact of these systematic uncertainties on our
atmospheric property estimates, we introduce innovative fitting methodologies
based on independent fits performed on different spectral windows. We finally
derived a Teff consistent with the spectral type of the target, considering its
young age, which is confirmed by our estimate of log(g). Despite the
exceptional data quality, attaining robust estimates for chemical abundances
[M/H] and C/O, often employed as indicators of formation history, remains
challenging. Nevertheless, the pioneering case of JWST's data for VHS1256b has
paved the way for future acquisitions of substellar spectra that will be
systematically analyzed to directly compare the properties of these objects and
correct the systematics in the models.Comment: 32 pages, 16 figures, 6 tables, 2 appendice
Exome Sequencing and the Management of Neurometabolic Disorders
BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level.
METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes.
RESULTS: We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%).
CONCLUSIONS: Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.)
Recommended from our members
The JWST early-release science program for direct observations of exoplanetary systems II: A 1 to 20 μm spectrum of the planetary-mass companion VHS 1256-1257 b
Stars and planetary system
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems. V. Do Self-consistent Atmospheric Models Represent JWST Spectra? A Showcase with VHS 1256–1257 b
This is the final version. Available on open access from IOP Publishing via the DOI in this recordThe unprecedented medium-resolution (Rλ ∼ 1500–3500) near- and mid-infrared (1–18 μm) spectrum provided by JWST for the young (140 ± 20 Myr) low-mass (12–20 MJup) L–T transition (L7) companion VHS 1256 b gives access to a catalog of molecular absorptions. In this study, we present a comprehensive analysis of this data set utilizing a forward-modeling approach applying our Bayesian framework, ForMoSA. We explore five distinct atmospheric models to assess their performance in estimating key atmospheric parameters: Teff, log(g), [M/H], C/O, γ, fsed, and R. Our findings reveal that each parameter's estimate is significantly influenced by factors such as the wavelength range considered and the model chosen for the fit. This is attributed to systematic errors in the models and their challenges in accurately replicating the complex atmospheric structure of VHS 1256 b, notably the complexity of its clouds and dust distribution. To propagate the impact of these systematic uncertainties on our atmospheric property estimates, we introduce innovative fitting methodologies based on independent fits performed on different spectral windows. We finally derived a Teff consistent with the spectral type of the target, considering its young age, which is confirmed by our estimate of log(g). Despite the exceptional data quality, attaining robust estimates for chemical abundances [M/H] and C/O, often employed as indicators of formation history, remains challenging. Nevertheless, the pioneering case of JWST's data for VHS 1256 b has paved the way for future acquisitions of substellar spectra that will be systematically analyzed to directly compare the properties of these objects and correct the systematics in the models