861 research outputs found

    Ileocecal Adenocarcinoma and Ureteral Transitional Cell Carcinoma with Multiple Sebaceous Tumors and Keratoacanthomas in a Case of Muir-Torre Syndrome

    Get PDF
    Cutaneous neoplasms including sebaceous tumors, keratoacanthomas, and basal cell carcinomas with sebaceous differentiation can be markers of internal malignancy associated with the Muir-Torre Syndrome (MTS). We report a 56-year-old man with a diagnosis of hereditary nonpolyposis colorectal cancer (HNPCC) and ureteral transitional cell carcinoma who subsequently developed two sebaceous gland neoplasms and several keratoacanthomas, leading to the diagnosis of MTS. Our case highlights the clinical advantages of immunohistochemistry (IHC) in identifying mutations in the mismatch repair (MMR) genes responsible for both HNPCC and MTS. The importance of continued clinical suspicion in the dermatological assessment of patients with sebaceous neoplasms is emphasized

    Critical mutation rate has an exponential dependence on population size for eukaryotic-length genomes with crossover

    Get PDF
    The critical mutation rate (CMR) determines the shift between survival-of-the-fittest and survival of individuals with greater mutational robustness (“flattest”). We identify an inverse relationship between CMR and sequence length in an in silico system with a two-peak fitness landscape; CMR decreases to no more than five orders of magnitude above estimates of eukaryotic per base mutation rate. We confirm the CMR reduces exponentially at low population sizes, irrespective of peak radius and distance, and increases with the number of genetic crossovers. We also identify an inverse relationship between CMR and the number of genes, confirming that, for a similar number of genes to that for the plant Arabidopsis thaliana (25,000), the CMR is close to its known wild-type mutation rate; mutation rates for additional organisms were also found to be within one order of magnitude of the CMR. This is the first time such a simulation model has been assigned input and produced output within range for a given biological organism. The decrease in CMR with population size previously observed is maintained; there is potential for the model to influence understanding of populations undergoing bottleneck, stress, and conservation strategy for populations near extinction

    Engineering improved ethylene production: Leveraging systems Biology and adaptive laboratory evolution

    Get PDF
    Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is therefore imperative. Ethylene is natively produced by several different microorganisms, including Pseudomonas syringae pv. phaseolicola via a process catalyzed by the ethylene forming enzyme (EFE), subsequent heterologous expression of EFE has led to ethylene production in non-native bacterial hosts including E. coli and cyanobacteria. However, solubility of EFE and substrate availability remain rate limiting steps in biological ethylene production. We employed a combination of genome scale metabolic modelling, continuous fermentation, and protein evolution to enable the accelerated development of a high efficiency ethylene producing E. coli strain, yielding a 49-fold increase in production, the most significant improvement reported to date. Furthermore, we have clearly demonstrated that this increased yield resulted from metabolic adaptations that were uniquely linked to the EFE enzyme (WT vs mutant). Our findings provide a novel solution to deregulate metabolic bottlenecks in key pathways, which can be readily applied to address other engineering challenges

    Device Thrombogenicity Emulation: A Novel Method for Optimizing Mechanical Circulatory Support Device Thromboresistance

    Get PDF
    Mechanical circulatory support (MCS) devices provide both short and long term hemodynamic support for advanced heart failure patients. Unfortunately these devices remain plagued by thromboembolic complications associated with chronic platelet activation – mandating complex, lifelong anticoagulation therapy. To address the unmet need for enhancing the thromboresistance of these devices to extend their long term use, we developed a universal predictive methodology entitled Device Thrombogenicity Emulation (DTE) that facilitates optimizing the thrombogenic performance of any MCS device – ideally to a level that may obviate the need for mandatory anticoagulation

    Study of redshifted H I from the epoch of reionization with drift scan

    Get PDF
    The detection of the Epoch of Reionization (EoR) in the redshifted 21-cm line is a challenging task. Here we formulate the detection of the EoR signal using the drift scan strategy. This method potentially has better instrumental stability as compared to the case where a single patch of sky is tracked. We demonstrate that the correlation time between measured visibilities could extend up to 1-2 hr for an interferometer array such as the Murchison Widefield Array (MWA), which has a wide primary beam. We estimate the EoR power based on cross-correlation of visibilities across time and show that the drift scan strategy is capable of the detection of the EoR signal with comparable/better signal-to-noise as compared to the tracking case. We also estimate the visibility correlation for a set of bright point sources and argue that the statistical inhomogeneity of bright point sources might allow their separation from the EoR signal

    Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19

    Get PDF
    Neutralizing autoantibodies against type I interferons (IFNs) have been found in some patients with critical coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the prevalence of these antibodies, their longitudinal dynamics across the disease severity scale, and their functional effects on circulating leukocytes remain unknown. Here, in 284 patients with COVID-19, we found type I IFN–specific autoantibodies in peripheral blood samples from 19% of patients with critical disease and 6% of patients with severe disease. We found no type I IFN autoantibodies in individuals with moderate disease. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 patients with COVID-19 and 26 non–COVID-19 controls revealed a lack of type I IFN–stimulated gene (ISG-I) responses in myeloid cells from patients with critical disease. This was especially evident in dendritic cell populations isolated from patients with critical disease producing type I IFN–specific autoantibodies. Moreover, we found elevated expression of the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) on the surface of monocytes isolated from patients with critical disease early in the disease course. LAIR1 expression is inversely correlated with ISG-I expression response in patients with COVID-19 but is not expressed in healthy controls. The deficient ISG-I response observed in patients with critical COVID-19 with and without type I IFN–specific autoantibodies supports a unifying model for disease pathogenesis involving ISG-I suppression through convergent mechanisms

    Characterisation and genome sequence of the lytic Acinetobacter baumannii bacteriophage vB-AbaS-Loki

    Get PDF
    © 2017 Turner et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Acinetobacter baumannii has emerged as an important nosocomial pathogen in healthcare and community settings. While over 100 of Acinetobacter phages have been described in the literature, relatively few have been sequenced. This work describes the characterisation and genome annotation of a new lytic Acinetobacter siphovirus, vB-AbaS-Loki, isolated from activated sewage sludge. Sequencing revealed that Loki encapsulates a 41,308 bp genome, encoding 51 predicted open reading frames. Loki is most closely related to Acinetobacter phage IME-AB3 and more distantly related to Burkholderia phage KL1, Paracoccus phage vB-PmaS-IMEP1 and Pseudomonas phages vB-Pae-Kakheti25, vB-PaeS-SCH-Ab26 and PA73. Loki is characterised by a narrow host range, among the 40 Acinetobacter isolates tested, productive infection was only observed for the propagating host, A. baumannii ATCC 17978. Plaque formation was found to be dependent upon the presence of Ca2+ ions and adsorption to host cells was abolished upon incubation with a mutant of ATCC 17978 encoding a premature stop codon in lpxA. The complete genome sequence of vB-AbaS-Loki was deposited in the European Nucleotide Archive (ENA) under the accession number LN890663. Copyright

    Variation in the Structure of Bird Nests between Northern Manitoba and Southeastern Ontario

    Get PDF
    Traits that converge in appearance under similar environmental conditions among phylogenetically independent lineages are thought to represent adaptations to local environments. We tested for convergence in nest morphology and composition of birds breeding in two ecologically different locations in Canada: Churchill in northern Manitoba and Elgin in southeastern Ontario. We examined nests from four families of passerine birds (Turdidae: Turdus, Parulidae: Dendroica, Emberizidae: Passerculus and Fringillidae: Carduelis) where closely related populations or species breed in both locations. Nests of American Robins, Yellow Warblers, and Carduelis finches had heavier nest masses, and tended to have thicker nest-walls, in northern Manitoba compared with conspecifics or congenerics breeding in southeastern Ontario. Together, all species showed evidence for wider internal and external nest-cup diameters in northern Manitoba, while individual species showed varying patterns for internal nest-cup and external nest depths. American Robins, Yellow Warblers, and Carduelis finches in northern Manitoba achieved heavier nest masses in different ways. American Robins increased all materials in similar proportions, and Yellow Warblers and Common Redpolls used greater amounts of select materials. While changes in nest composition vary uniquely for each species, the pattern of larger nests in northern Manitoba compared to southeastern Ontario in three of our four phylogenetically-independent comparisons suggests that birds are adapting to similar selective pressures between locations
    corecore