108 research outputs found

    A Cambrian–Ordovician boundary section in the Rafnes–Herøya submarine tunnel, Skien–Langesund District, southern Norway

    Get PDF
    Rock specimens and contained fossils collected in 1976 from a submarine tunnel driven between Herøya and Rafnes in the Skien–Langesund area of southern Norway, have been restudied. The contained fossils include olenid and agnostoid trilobites, graptolites and brachiopods, groups described in detail for the first time from the area and documenting a Cambrian–Ordovician boundary section unique in the district where the upper Cambrian Alum Shale Formation is elsewhere overlain by the Middle Ordovician Rognstranda Member of the Huk Formation (Kundan in terms of Baltoscandian chronostratigraphy). The hiatus at the base of the Huk Formation is thus smaller in the section described herein, beginning at a level within rather than below the Tremadocian. Estimated thickness of the Alum Shale includes 10–12 m of Miaolingian and 20–22 m of Furongian strata with trilobite zones identified, and a Tremadocian section of 8.1 m identified by species of the dendroid graptolite Rhabdinopora in the basal 2.6 m and Bryograptus ramosus at the top. The Tremadocian section is preserved in a postulated zone of synsedimentary subsidence along the Porsgrunn–Kristiansand Fault Zone, while at the same time there was extensive erosion across an emergent, level platform elsewhere in the Skien–Langesund District and the southern part of the Eiker–Sandsvær District to the north. Aspects of stratigraphy and tectonics are highlighted together with a discussion on the Cambrian– Ordovician boundary locally and worldwide

    The only known cyclopygid–‘atheloptic’ trilobite fauna from North America: the upper Ordovician fauna of the Pyle Mountain Argillite and its palaeoenvironmental significance

    Get PDF
    The trilobite fauna of the upper Ordovician (middle Katian) Pyle Mountain Argillite comprises a mixture of abundant mesopelagic cyclopygids and other pelagic taxa and a benthic fauna dominated by trilobites lacking eyes. Such faunas were widespread in deep water environments around Gondwana and terranes derived from that continent throughout Ordovician time but this is the only known record of such a fauna from North America and thus from Laurentia. It probably reflects a major sea level rise (the ‘Linearis drowning events’) as does the development of coeval cyclopygid-dominated deep water trilobite faunas in terranes that were marginal to Laurentia and are now preserved in Ireland and Scotland. The Pyle Mountain Argillite trilobite fauna occurs with a deep water Foliomena brachiopod fauna and comprises 22 species. Pelagic trilobites (mostly cyclopygids) constitute 36% of the preserved sclerites, and 45% of the fauna is the remains of trilobites lacking eyes, including one new species, Dindymene whittingtoni sp. nov. Three species of cyclopygid are present, belonging in Cyclopyge, Symphysops and Microparia (Heterocyclopyge). Cyclopygids are widely thought to have been stratified in the water column in life and thus their taxonomic diversity reflects the relative depths of the sea-beds on which their remains accumulated. A tabulation of middle and upper Katian cyclopygid-bearing faunas from several palaeoplates and terranes arranged on the basis of increasing numbers of cyclopygid genera allows an assessment of the relative depth ranges of the associated benthic taxa. The Pyle Mountain Argillite fauna lies towards the deeper end of this depth spectrum

    Resting and Post Bronchial Challenge Testing Carbon Dioxide Partial Pressure in Individuals with and without Asthma

    Get PDF
    Objective: There is conflicting evidence about resting carbon dioxide levels in asthmatic individuals. We wanted to determine if transcutaneously measured carbon dioxide levels prior and during bronchial provocation testing differ according to asthma status reflecting dysfunctional breathing. Methods: We investigated active firefighters and policemen by means of a validated questionnaire on respiratory symptoms, spirometry, bronchial challenge testing with methacholine (MCT) and measurement of transcutaneous blood carbon dioxide partial pressure (PtcCO 2) at rest prior performing spirometry, one minute and five minutes after termination of MCT. A respiratory physician blinded to the PtcCO2 results assigned a diagnosis of asthma after reviewing the available study data and the files of the workers medical screening program. Results: The study sample consisted of 128 male and 10 female individuals. Fifteen individuals (11%) had physiciandiagnosed asthma. There was no clinically important difference in median PtcCO 2 at rest, one and five minutes after recovery from MCT in asthmatics compared to non-asthmatics (35.6 vs 35.7 mmHg, p = 0.466; 34.7 vs 33.4 mmHg, p = 0.245 and 37.4 vs 36.4 mmHg, p = 0.732). The median drop in PtcCO2 during MCT and the increase after MCT was lower in asthmatics compared to non-asthmatics (0.1 vs 3.2 mmHg, p = 0.014 and 1.9 vs 2.9 mmHg, p = 0.025). Conclusions: PtcCO2 levels at rest prior and during recovery after MCT do not differ in individuals with or without physicia

    Stable Isotope Evidence for Dietary Overlap between Alien and Native Gastropods in Coastal Lakes of Northern KwaZulu-Natal, South Africa

    Get PDF
    Tarebia granifera (Lamarck, 1822) is originally from South-East Asia, but has been introduced and become invasive in many tropical and subtropical parts of the world. In South Africa, T. granifera is rapidly invading an increasing number of coastal lakes and estuaries, often reaching very high population densities and dominating shallow water benthic invertebrate assemblages. An assessment of the feeding dynamics of T. granifera has raised questions about potential ecological impacts, specifically in terms of its dietary overlap with native gastropods.A stable isotope mixing model was used together with gut content analysis to estimate the diet of T. granifera and native gastropod populations in three different coastal lakes. Population density, available biomass of food and salinity were measured along transects placed over T. granifera patches. An index of isotopic (stable isotopes) dietary overlap (IDO, %) aided in interpreting interactions between gastropods. The diet of T. granifera was variable, including contributions from microphytobenthos, filamentous algae (Cladophora sp.), detritus and sedimentary organic matter. IDO was significant (>60%) between T. granifera and each of the following gastropods: Haminoea natalensis (Krauss, 1848), Bulinus natalensis (Küster, 1841) and Melanoides tuberculata (Müller, 1774). However, food did not appear to be limiting. Salinity influenced gastropod spatial overlap. Tarebia granifera may only displace native gastropods, such as Assiminea cf. ovata (Krauss, 1848), under salinity conditions below 20. Ecosystem-level impacts are also discussed.The generalist diet of T. granifera may certainly contribute to its successful establishment. However, although competition for resources may take place under certain salinity conditions and if food is limiting, there appear to be other mechanisms at work, through which T. granifera displaces native gastropods. Complementary stable isotope and gut content analysis can provide helpful ecological insights, contributing to monitoring efforts and guiding further invasive species research

    Quasi-autonomous quantum thermal machines and quantum to classical energy flow

    Get PDF
    There are both practical and foundational motivations to consider the thermodynamics of quantum systems at small scales. Here we address the issue of autonomous quantum thermal machines that are tailored to achieve some specific thermodynamic primitive, such as work extraction in the presence of a thermal environment, while having minimal or no control from the macroscopic regime. Beyond experimental implementations, this provides an arena in which to address certain foundational aspects such as the role of coherence in thermodynamics, the use of clock degrees of freedom and the simulation of local time-dependent Hamiltonians in a particular quantum subsystem. For small-scale systems additional issues arise. Firstly, it is not clear to what degree genuine ordered thermodynamic work has been extracted, and secondly non-trivial back-actions on the thermal machine must be accounted for. We find that both these aspects can be resolved through a judicious choice of quantum measurements that magnify thermodynamic properties up the ladder of length-scales, while simultaneously stabilising the quantum thermal machine. Within this framework we show that thermodynamic reversibility is obtained in a particular Zeno limit, and finally illustrate these concepts with a concrete example involving spin systems

    Social progress orientation and innovative entrepreneurship: an international analysis

    Full text link
    corecore