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Abstract

There are both practical and foundational motivations to consider the thermodynamics of quantum
systems at small scales. Here we address the issue of autonomous quantum thermal machines that are
tailored to achieve some specific thermodynamic primitive, such as work extraction in the presence of
athermal environment, while having minimal or no control from the macroscopic regime. Beyond
experimental implementations, this provides an arena in which to address certain foundational
aspects such as the role of coherence in thermodynamics, the use of clock degrees of freedom and the
simulation of local time-dependent Hamiltonians in a particular quantum subsystem. For small-scale
systems additional issues arise. Firstly, it is not clear to what degree genuine ordered thermodynamic
work has been extracted, and secondly non-trivial back-actions on the thermal machine must be
accounted for. We find that both these aspects can be resolved through a judicious choice of quantum
measurements that magnify thermodynamic properties up the ladder of length-scales, while
simultaneously stabilising the quantum thermal machine. Within this framework we show that
thermodynamic reversibility is obtained in a particular Zeno limit, and finally illustrate these concepts
with a concrete example involving spin systems.

1. Introduction

The issue of work in arbitrary-scale quantum systems turns out to be quite subtle, and a good deal of recent
studies [ 1-22] have analysed varying notions of work for finite-sized quantum systems. More recently the role
that quantum-mechanical properties, such as coherence, play in work extraction are being addressed using
resource-theoretic formulations. For example, it has been pointed out in [23] that free energies do not constitute
proper coherence measures, and so to properly quantify the thermodynamic value of quantum coherence it is
necessary to develop measures that go beyond free energies. In subsequent analysis [24, 25], general upper and
lower-bounds have been developed to constrain such coherent transformations under very general
thermodynamic operations. Moreover, in [26, 27] the question of work extraction from an arbitrary qubit state
has been analysed in a context which explicitly models the coherence resources that are required to extract work
from the qubit state. The analysis recovers the expected result that one can indeed associate the free energy
difference AF to an arbitrary pure qubit state |1)) (1|, but only within a particular ‘classical regime’, in which
one has access to an infinite system with unbounded coherence resources. Outside of this setting it is provably
impossible to extract all of the free energy from the quantum coherence.

The actual implementation of these thermodynamic processes often assume a complex protocol. A great
deal of control is required over the different components in order to magnify the energy acquisition up to scales
in which the notion of ordered, robust energy makes more sense. The central aim of this paper to address
scenarios in which such thermodynamic processes are carried out on a quantum system S via a quasi-
autonomous thermal machine M that is comparable in scale and itself displays quantum-mechanical properties.
This sheds light on the physical characteristics demanded of a quantum thermal machine.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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In the case of work extraction, a finite-sized quantum machine will absorb energy which, due to its finite
dimension, will diminish its ability to function. We show that a resolution to this is to perform an ‘energy
harvesting measurement’ on the machine. This harvesting measurement serves a dual function of siphoning off
energy from the machine while also stabilising its ability to function as a thermal machine at these quantum-
mechanical scales.

1.1. Clocks and quantum coherence

As highlighted in [23-25, 27], in order for thermodynamic processes to be sensitive to quantum coherence at
arbitrary scales the thermal machine must itself possess coherent properties. In [25] this requirement for
quantum coherence was identified with transformations that break time-translation symmetry. Any
quantification of the coherence follows from a quantification of this asymmetry.

More explicitly, the breaking of time-translation symmetry demands that the effects of an action depend on
whether it is performed at time #; or at some later time #, > #,. The way in which one handles time-translation
asymmetry has been known for a long time—we introduce a ‘clock’ system, sensitive to the passage of time [28].
In the classical regime we of course have abundant access to time-keeping devices, however this becomes a more
non-trivial component for extremely small, autonomous quantum devices, or in environments in which
quantum-mechanical aspects dominate.

Such considerations have also resulted in an increased focus on the role of clocks in thermodynamics
[12,27,29-33]. To implement autonomous quantum thermodynamic protocols, generic thermal machines
invariably require a clock degree of freedom, which serves as a non-classical time-keeping device. This not only
allows access to quantum coherence, but also can be used to induce effective time-dependent interactions within
systems.

1.2. Energy transfer to macroscopic scales via quantum measurements

The use of the clock in, say, a work-extraction protocol necessitates a non-trivial interaction between the
quantum system S and the clock. The unavoidable back-action experienced by the machine is in general
accompanied by an energy flow that can either be transferred to other degrees of freedom in the machine M, or
more simply maintained in the clock itself. However if the machine M is comparable in scale to the quantum
system S then it is debatable to what extent one has ‘gained work’ if it is confined to quantum-mechanical
degrees of freedom in M. A basic requirement is that the acquired energy can be transferred to larger scales in
some natural manner.

The passage from the quantum regime to the classical regime has long been a topic of controversy and
debate. Where does quantum end and classical begin? Notions that are applicable on the classical side of this
divide are inapplicable on the quantum side, and quantum measurements play a central role in linking these two
regimes. Depending on which side of the cut one places the measurement device one can either view a
measurement as an abrupt transformation of the quantum state (e.g. via a projective measurement), or one
could equally model the measurement process itself as a purely unitary interaction between the quantum system
Sand some measurement apparatus A. The purpose of the unitary interaction Us, is to magnify the quantum-
mechanical aspects up the ladder of length-scales to degrees of freedom that are deemed classical. The apparatus
eventually admits a read-off and an objective measurement outcome is obtained.

One particular set of constraints when considering fully quantum mechanical measurement approaches is
given by conservation laws. The connection between conservation laws and measurements has a long and subtle
history. The WAY-theorem states that in the presence of a conservation law there is an effective superselection
rule in place on the observables that can be measured [6, 34—39]. In [37] it was shown that the measurement
device must carry two different resources—a coherence resource to partially lift the superselection rule, and a
charge degree of freedom to balance books. The unitary interaction between the machine M and the system Sis
constantly entangling the two systems. This unitary correlation process can be viewed as an information-
acquisition by the machine in an effective local energy basis that varies with time. Note that this process of M
acquiring information on Sis distinct from the external measurement performed on M we will later consider.

In what follows, we view the operation of the thermal machine M with the system S and reservoir R as
transforming an energetic degree of freedom of the device under pg ® p,; ® v, — Usm (05 @ ppr @ ) Udnps
which can then read-off via a subsequent measurement on M. This disturbing measurement transfers the energy
acquired by the quantum thermal machine into the macroscopic regime, where it can be ascribed a less
ambiguous status.

In what follows we use thermodynamic work extraction from a qubit system as our focus. The work
extraction involves a quasi-autonomous thermal machine based on a globally time-independent Hamiltonian,
which performs the protocol on the quantum side of the cut, together with a continual flow of energy across the
cut via a classically controlled measurement process that also serves to stabilise the quantum device.
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2. Autonomous quantum machines: the basic constituents

The traditional Szilard argument begins with the knowledge that the system is in one particular state of a pair of
energetically degenerate levels (e.g. a particle is on the left-hand side of a piston) [ 12, 40—44]. Conditioned on this
knowledge, the agent applies an adapted protocol that extracts a certain quantity of work. Schematically the
unoccupied energy level is elevated by switching on a time-dependent Hamiltonian (e.g. attaching weights, or
tuning magnetic fields). The system is then placed in equilibrium with a thermal reservoir at some inverse
temperature 3, and the Hamiltonian is quasi-statically switched off in a classically controlled manner.

In the fully quantum-mechanical scenario our starting point is again knowing that the qubit system Sisina
definite pure state | 1)) (1 |. We next feed this state into a thermal machine M, and the composite evolves under
the joint Hamiltonian Hg,,, together with system-bath couplings. Crucially, note that we do not assume classical
control over the interaction between the quantum systems. Therefore, to obtain a non-trivial extraction of
energy requires us to induce a particular time-dependent evolution of the system S—therefore the machine M
must possess a clock degree of freedom that induces an effective time-varying Hamiltonian on the target system.
In [31] the authors also consider quantum systems that via interactions with their environment act as clocks, and
study their synchronisation as well as the back-action they suffer due to the interaction, although notina
thermodynamic setting. The clock in [31] comprises two components, a clockwork which evolves due to an
internal mechanism, and tick registers which briefly interact with the clockwork and extract time information.
The notion of a clockwork in [31] is similar to what we call the clock itself, while the system S can loosely be seen
as playing the role of the tick registers. The clock in the present study however is in continuous contact with the
system and evolves with it under a joint unitary.

2.1.Induced local time-dependent level splittings
The known state |t) (1| defines an orthonormal basis { 1), |1}) } in the qubit system. Given this preferred
decomposition, the generic interaction Hamiltonian needed on the joint Hilbert space Hgy, takes the form

HSM:0'®H[+J1®HF (1)

where o := |¢) (| — |1) (| (see appendix B). In particular, the term o @ Hj is what will generate a level-
splitting local to the qubit, with the time-dependence being encoded in the thermal machine’s quantum state
py- Thesecond term 1 ® Hp, as we shall see, generates an evolution on the system M which is not sensitive to the
state of the qubit, and so can be interpreted as the free Hamiltonian of the machine. Crucially, this joint
Hamiltonian is time-independent, fixed for all eternity.

In the absence of bath couplings, the system-machine composite evolves under this Hamiltonian as
poyy — € o, el The function of the interaction with the machine is to induce an effective Hamiltonian
thatislocal to the qubit. We define

Hy(t) = tru[ 1® py (0 Hou |, )

which is a time-dependent mean-field Hamiltonian on the qubit. This mean-field approximation turns out to be
the physically appropriate choice in the context considered, and has been analysed in more detail in [12, 45]. For
the above interaction Hamiltonian this takes the form

H(t) = <HI> o+ <HF> 1. 3)

This mean-field Hamiltonian defines a local effective basis, and encodes the non-correlative (and therefore non-
entropy increasing) dynamics local to the system [45—47]. Crucially, the thermal bath is assumed to only see this
local Hamiltonian, which encodes the statement that the machine M does not undergo direct thermalisation.
This assumption is equivalent to demanding a large coupling strength between system and bath relative to the
coupling to the machine, such that the thermalisation time-scale of the system is much shorter than that of the
machine. The exact degree to which thermalisation of S occurs will depend on the particular bath coupling rates
(see also appendix F).

Since the energy exchanges with the bath only depend on the level-splitting of Hy it suffices to assume
Hg(t) = (Hj) 0. Also, note that instead of time being an explicit parameter in the system Hamiltonian tuned by
an external agent, the time-dependence is now induced by the dynamics and the particular quantum state of the
machine M, giving the machine an inbuilt quantum clock. The time-dependence is explicitly a function of the
coherence properties of the state p,, with respect to the Hamiltonian Hy,j, as emphasised previously'.

Therefore, the joint Hamiltonian is essentially determined for the (known) quantum state |) (1| and,
together with an initial joint state

We use the terms clock and machine interchangeably, as for the discussion here the precise distinction between the clock degree of freedom
and the rest of the machine is not important.
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p(0) = [1) (V] @ py(0), 4)

induces a specific time-dependent level-splitting local to the qubit. However one must also address the back-
action of the dynamics on the machine itself. The joint Hamiltonian can be written in the alternative form

HSM:|¢><¢|®H—+|@><E| ® Hy, (5)
where we have defined H,. := Hr + H;. The evolution that is generated by this Hamiltonian splits into two parts

U@ =19l U® +|P)(P] © U, ©)

where U.(t) = e "+, This describes a controlled unitary action, in which conditioning on the qubit’s | /) and
|)) states evolves the clock along two independent orbits according to U_and U, respectively.

2.2.Designing a good machine: core requirements
We now turn to the question of what clock characteristics besides the validity of equation (2) are desirable for the
functioning of the thermal machine. To make this a well-posed problem, we demand that the clock’s Hilbert
space dimension is fixed and that the Hamiltonian has its spectrum upper bounded by some fixed energy-scale
[|Hspm || < E, but we are otherwise free in designing the machine’s Hamiltonians and its starting state p,, (0).
Firstly, the Szilard argument requires an initial degeneracy in the energies of the qubit. Secondly, it is
desirable (but not essential) to fix the energy of the state |1)) to be zero, so that the qubit’s induced level-splitting
according to equation (3) is given by A(¢) = tr[p,, (+) H,]. Finally and most importantly we require the right
coherence properties of the machine to ensure that it functions well, both as a clock and in its ability to induce
level-splittings on the qubit. These three criteria are respectively encoded by the following set of conditions on
the operators { p,,(0), H_, H,}:

(@) trpy (0)H[] = 0,
(i) tr[py (0)H_] = 0,
(i) Im (tr [p,, (0)[H_, H,]]) > 0.

Conditions (i) and (ii) follow directly and uniquely from the desire for initial degeneracy and fixing of the
ground state. The intuition behind (iii) is less straightforward and deserves some elaboration. We would like the
Hamiltonians H, and H_ to have alarge commutator in an operator norm sense. At the level of the algebraic
relations this implies a rapidly changing unitary evolution (as can be seen from expanding the unitary in
increasing orders of commutators). But we then require the state to have a strong response to the induced
dynamics. This can be achieved by having the initial state ‘mutually unbiased’ with respect to the Hamiltonians.
Note that every Hilbert space H admits a triple of mutually unbiased bases. An extreme regime is the case of Hy.
being built from two of these bases, while the quantum state is one of the basis states in the third basis. This
guarantees that the state simultaneously has maximal coherence with respect to both bases and therefore will
strongly break time-translation invariance. Note that taking the imaginary part in (iii) is due to the fact that the
trace will be imaginary due to the anti-Hermitian nature of the commutator. While not being unique, condition
(iii) provides a convenient encapsulation of these physical requirements.

From equation (5) we see that in the absence of any thermal contact, the qubit remains in the state |¢) for all
time as the joint system freely evolves under Hgy,. This defines a reference trajectory for the clock, whose
dynamics are fully determined by U_. We therefore define x (¢) := U_(t) p,, (0) U T (¢) as the clock state at time ¢
on the ideal reference clock-orbit. Clearly, for any given Hamiltonian Hgy,, there is a range of states { pg\’f;) (0) },,, that
satisfy conditions (i) and (ii) and ensure validity of equation (2). Each of these initial clock states has its own
unique clock-orbit x " (¢) associated with it. We choose the specific state p,, (0) as the state whose associated
orbit y () maximises the level splitting A (¢) for some t = 7 over the orbit, i.e.

X (7’) = arg maxx(m)(mtax tr[x(m)(t)H+]). @)

This maximising state can always be taken to be a pure state which we call |d), where d refers to the Hilbert space
dimension of the clock. The gap maximisation then requires that U_ rotates this pure state |d) (d | (which obeys
conditions (i) and (ii)) into the maximum eigenvalue eigenstate of H . To achieve this, it is sufficient to design
the machine’s Hamiltonians such that H, and H_ are generators of SU(2) on the d-dimensional machine (see
appendix A for details). Assuming this choice, equation (7) is equivalent to optimising for condition (iii), so that
the optimal machine starting state is the maximum eigenvalue eigenstate of the operator C := i[H_, H. ] (which
is also an SU(2) generator). We define the eigenbasis of C with ascending eigenvalues as { |1) } 1 < n<a> such that
pp (0) = |d) (d|. Finally, we introduce the complete rotating clock basis { |7 (¢)) := U.(¢)|m) } which co-rotates
with the clock’s m = dreference orbit x (#) = |d(¢)){(d (¢)|.

4
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Choosing H_ to be an SU(2) generator on the system Hilbert space H also has the advantage of ensuring
closed, periodic orbits and will allow us to run the engine in a well-defined cycle’. We call the period of the clock
7, such that 7 is the smallest positive number for which U_(7) = 1. The d different orbits swept out by the
{Im(#)) } clock basis states over one clock period form a zero-energy surface with respect to the qubit’s | ) state.
Another important property is that, for all t = n7 with n € N, the orthogonal states | (n7)) have equal energy
with respect to any qubit state. This follows since the entire eigenbasis of C satisfies condition (i), and so we may
switch between clock orbits without any energy cost at these times.

3. The explicit protocol

Having established the basic quantum-mechanical properties required of the engine, we now turn to the details
of the actual engine protocol. First there is the initialisation phase in which the initial state (4) freely evolves for a
time 7 at which point it attains a maximal local level-splitting A.x := A(%). This induces alocal raising of the
system’s unoccupied | 1)) state, as in the original Szilard-type protocol. However the interaction Hamiltonian
Hg)is fundamentally time-independent, and so there is a need for a single timing-switch within the machine
that initialises thermal contact between the qubit and the thermal bath at time t = 7. Itis not entirely clear that
such a single time switching is fundamentally necessary, but in approaches such as the present one it appears to
be almost impossible to avoid if one wants to keep the model general.

With thermal contact in place, work extraction then takes place for 7 < ¢ < 7 and can be analysed in steps
of duration d¢, which can be viewed as constituting unit protocols (UPs). Each UP can be further analysed in
terms of three sub-components:

(a) Thermalisation of the system S.
(b) Global dynamical evolution of system and machine.

(c) Harvesting measurement on the machine M.

Itis important to note that the division into these units is determined by the macroscopically controlled timing
of measurements, and not at the level of the quantum machine.

3.1. Autonomy of the thermal machine

One might argue that the frequent measurements in a (as shall be seen later) time-dependent basis in step (c) are
in fact similar to a non-autonomous machine having a fine-tuned time-dependent Hamiltonian which is
externally controlled. Note though that these two scenarios only become comparable in the limit df — 0 where
the measurements occur at a very high rate. However, our model is valid for arbitrary d¢, and one can even
consider the extreme case in which df = 7 — 7 and only a single measurement in a fixed basis is performed at
the end of the protocol’. Despite a reduced work output and higher probability of failure (see below), the thermal
machine is still able to extract work from the system, even though the process in this limit becomes comparable
to the standard two-point work measurement [48, 49] employed in many quantum thermodynamic protocols,
but with a fixed Hamiltonian. In the non-autonomous scenario if the Hamiltonian was fixed no work output
would be possible in this case. Since the machine studied here is able to extract work for any numbers of
interventions we call it quasi-autonomous. It abstractly coincides with the fully non-autonomous case only in the
limit of continuous intervention df — 0.

3.2. Dynamics of system and thermal machine

The exact thermalisation process can be modelled in various ways, including non-trivial interaction with the
unitary dynamics generated by Hg,. However, for the sake of analysis we may approximate steps (a) and (b) as
firstly a thermalisation of the qubit with respect to the local mean-field Hamiltonian H(#), followed by unitary
dynamics exp[ — iHsy dt]. This approximation is robust over a large range of parameters, and exact in the

dt — 0 limit (see appendix F and discussion in [12]).

If we do not choose such an H_, we have to impose an additional condition, demanding the ratio of the eigenvalues of H_ to be rational.
Note that any real number can be approximated by a rational number with arbitrary accuracy, and thus this restriction could be considered
as unnecessarily strict since any clock will always be periodic to arbitrary accuracy. However, its period might approach infinity in these
cases, so the restriction makes sense from a practical view point.

In this case one has to consider more realistic thermalisation protocols such as the ones discussed in appendix F. The choice of a single

thermalisation per dt, as employed in the main text, is only necessary for obtaining the analytical expressions, but not a fundamental property
of the model.
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Figure 1. Dynamics of the thermal machine. The quantum thermal machine at point A of its orbit absorbs energy from the heat
reservoir, which causes a fraction of the total state to deviate from the reference clock orbit. Specifically a fraction p, (t) evolves to
point E off the reference orbit, while the remaining fraction (1 — p, (¢)) freely evolves to B. The energy-harvesting measurement
projects the component at E onto B and allows us to extract this energy as well as stabilising the machine back to the reference orbit.
Each triangular section constitutes a single unit protocol (UP). The total entropy generated corresponds to the integrated ‘area’ under
the jagged curve, while the extracted work corresponds to the integrated ‘length’ of the jagged curve. The reference orbit  (¢) is the
shaded great circle with respect to which the protocol is defined.

As such, at the beginning of every UP the joint system is to good approximation in a state
p (1) = v () @ x(t),where v (t) = p, ()1} (Y] + p, (1) |¥) (¥ ]is the qubit’s Gibbs state with respect to its
local, mean-field Hamiltonian Hg() (equation (3)) at inverse temperature 3, such that p, (t) = (1 + e HAAM)-1
and p,(t) = 1 — p,(®).

The evolution under the Hamiltonian Hg,, takes the joint system from p (¢) to
p'(t + dt) :== U(dt)p () UT(dt). However, since the qubit is generically in a mixed state, the clock now deviates
from the reference clock orbit’, i.e. t[p’ (t + dt)] = x (t + dt),as schematically illustrated in figure 1.
Crucially, this deviation of the clock from its reference orbit corresponds to energy being transferred from the
qubit system into the machine. Since the state of the clock is distorted by this gain it therefore not only acts as a
time-keeping device but also as temporary battery.

3.3. Energy-harvesting and clock stabilisation

Since the quantum thermal machine suffers a back-action as it absorbs energy its ability to induce local-level
splittings and to function as a clock is affected. A crucial component of the protocol is that we repeatedly perform
energy-harvesting measurements on the machine that serve two functions: firstly to transfer the energy gain
from the quantum to the classical regime, and secondly to stabilise the clock/machine system. This in turn
allows us to separate the concepts of clock and battery in the quantum-mechanical system.

The target state on the reference clock orbit is given by x (t + dt), and therefore the measurement we
perform is the projective rank-1 measurement in the orthonormal clock basis { | (¢ + dt)) }. The ability to
perform this measurement is assumed to be a free operation that is accessible macroscopically, however this too
could be modelled more explicitly using a larger coherent reference, if one wished. When the measurement is
performed, with high probability we project back onto the reference orbit x (+ + dt), thus stabilising the clock.
This probability tends to one as we either decrease the thermal couplings or increase the rate dt ' at which we
perform the measurements (see appendices B and D).

The measurement performed during each UP does not commute with Hgy,and is thus not energy-
conserving. It therefore leads to energy flows between the joint system and the external measurement device.
Since energy is globally conserved we can explicitly compute the energy flow into the measurement device. For

4 Asan illustrative analogy, one can think of the state x (¢) as the hand of a clock and dt as the fundamental unit of time, a ‘second’. If the
qubit has a non-zero |¢/) component, instead of simply ticking to the next position x (t + df), the hand of the clock splits up into two parts
ending up in a convex mixture of the expected x (f 4+ dt) state, and the state U, (d#) x (¢) Ui (dt).
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the outcome corresponding to the projection IT,,,(r + df) :== 1 ® |m (¢ + dt)) (m(r + dr)|we find this to be
dE,(t, df) = tr [HSM(p’(t +dr) — p, (1 + dt))], (8)

where p,, (t + dt) oc IL,(t 4 dt) o' (t + dt)IL,,(t + dt)is the post-measurement state of the system and
machine conditioned on outcome m.

3.4. Exorcising demons: Landauer accounting in the macroscopic regime
While equation (8) provides the exchange of energy between the quantum device and measurement apparatus,
we cannot identify this as the extracted work. The reason is that the measurement device must be re-set and its
memory erased in order to avoid any Maxwell’s demon type scenarios [50-58]. However this memoryisa
classical record in the macroscopic apparatus and therefore the traditional Landauer cost of erasure applies
[59-63].

The information gain by the apparatus is described by the distribution of measurement outcomes
p () = {p, (t, dt) },and so the minimal cost of erasure is given by

AWeser (1, dt) = B71S(p (1)), ©)
where S (-) is the Shannon entropy. We can therefore identify an averaged work gain during the UP as
dW (1, dt) = > p, (t, dE, (1, dt) — dWeset (1, d1). (10)

This provides a basic energy accounting over the UP from time ¢ to time t + dt. However in order to
compose multiple UPs over the entire engine cycle requires us to address the matter of what happens when we do
not obtain the projection onto the reference clock orbit, corresponding tom = d.

3.5. Modes of operation and quantum feedback
We now restrict our focus to two distinct operation modes for the engine, which we refer to as the unselective and
selective protocols.

In the unselective case a sequence of measurements is performed in intervals of length dt, and the outcomes
recorded. Finally at the end the total measurement data is erased and we have a net energy gain which is the work
output. For this we can define the trajectory m := {m;, ms_ 4, ..., m, } asthe set of measurement outcomes of

theN =T —T

consecutive UPs of a full cycle. In each UP, the energy flow into the measurement device given

measurement outcome #1;, 4;, conditioned on starting the UP in state labelled by m, is
dE(mtert‘mt) =1t [HSMAp(mt+dt|mt)]) 1n

where Ap (m;, q;|m;) == p(m;) — p(m;yq:|m,;) is the difference between the initial state of the UP and the
post-measurement state. The notation p (1, ) shows explicitly that the clock does not necessarily start on the
reference orbit, but on any of the orbits labelled by 1 < m; < d, and that the qubit is in a thermal state with
respect to the local Hamiltonian induced by this orbit. It is important to note that the energy flow only depends
on the clock state directly preceding each UP, not the entire trajectory, since the thermalisation step essentially
kills any trajectory history resulting in a Markov process (see appendix B).

The reset at the end of of the cycle is given by the Landauer expression. If p (m) denotes the probability of a
certain complete trajectory m, then the reset cost is given by Weer = 57!S({p (m) }). The average work output
of the unselective engine is

(W), = > _pm)Em) — B7'S({p(m)}), (12)

m

where E(m) = ZnN . dE (M4 nde | M5 4 (n—1)ar) is the energy flow for the trajectory m. The unselective
protocol constitutes a minimalist approach, in which the quantum components require no feedback control. It
is therefore the most autonomous mode of operation.

However in this unselective regime the thermal machine undergoes non-trivial back-action that degrades
the clock. One might therefore wish to allow elementary feedback control on the quantum systems with the aim
of maintaining the characteristics of the machine. Feedback control has been extensively studied in the context
of work extraction protocols, both in the classical as well as in the quantum case (see e.g. [13, 15, 64—67]). These
feedback protocols generally employ measurements of the target system, followed by operations which are
chosen based on the specific result of the measurement. Similarly here, in the selective protocol we operate
conditional on the measurement outcomes. If m = d we have a successful projection onto the reference clock
orbit, and all is well. The clock is restored back into the state y (f + dt), successfully stabilising it, and the joint
stateis p, (t + dt) = p; (t+ dt) ® x (¢ + dr).

7
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Forany m = d anon-ideal outcome occurs and the clock jumps into a different orbit |m (¢t 4 dr)).
Moreover, if one reads off the outcome, then the qubit is collapsed into |1Z>, resulting in a joint state
P, + dt) = |{) (¥| @ |m(t + dt)) (m(t + dt)|(see appendix B for details and the specific form of
p5(t + dr)). The quantum engine has ‘misfired’, and in this case we abort the current engine cycle, decouple the
qubit from the bath, and perform the following feedback process that resets the engine for a new cycle. The
feedback on the system S flips | 1) into |1/) through a single qubit unitary (whose energy cost has to be accounted
for), followed by the free evolution of the joint system, ‘running the engine in neutral’, for a duration
T — (¢t + dt) sothatthe clockendsupin [m (7)) = |m(0)). Crucially, since for t = nr all states of the clock
basis have equal energy as noted above, we may now restore the clock to the reference orbit x (0) without any
energy cost, ready to begin a new cycle.

4. Actual performance

The cumulative erasure cost in the selective mode is generally smaller than the single large erasure in the
unselective mode. Starting from the work expression in equation (10) one can compute the average work output
of this engine mode similar to equation (12). This average, which we shall simply call (W), needs to take into
account the probabilities of the engine succeeding each UP, as well as the cost of the feedback protocol in case the
engine misfires. The explicit expression for (W) equation (C10) is derived in appendix C. We can also define
Wideas as the maximum single-shot work output of a cycle that completes without a misfire. Although not
established explicitly for general clocks, the selective engine employing a feedback protocol has a higher work
output Wgey = (W) = (W), inall examples considered, with equality in the Zeno limit (ZL), which we shall
now consider.

4.1. Thermodynamic reversibility and the ZL
The limiting case of d# — 0 constitutes a ZL and takes on a special role, since it allows us to recover the well-
established results of equilibrium thermodynamics. Explicitly evaluating all the quantities involved, it is easy to
show (see appendix D) that the probability of being projected back into the reference clock orbit is equal to unity
up to first order in dr. Thus the selective engine will complete the entire cycle without a single UP failing with
probability 1 — O(dt?), and the unselective engine will follow the reference orbit trajectory {d, d, ..., d} witha
probability 1 — O(dt?). It can also be shown that in both cases the cost of resetting vanishes up to first order,
Wieset = O(dt?), making the process essentially reversible. This implies that in the ZL both engine modes are
equivalent. These results further imply that equation (10) reduces to limg,_,odW (¢, dt) = dE (¢, dt),i.e. the
entire energy flowing into the measurement device can actually be identified as work.

More specifically, we find for the infinitesimal work flow

dW (¢, df) = —ip,(Dtr [X(t)[H_, H+]]dt + o(dr?), (13)

where p, (t) is the qubit’s thermal occupation with respect to the local Hamiltonian induced by x (¢).

We can compare this to the change in free energy of the qubit. Its partition function is
Z(t) =1 4+ e 720 Substituting this into the infinitesimal change in free energy dF (1) = d(—3 In Z (¢))
we recover the quasi-static equilibrium result,

lim dW (¢, dt) = —dF(¥). (14)
dt—0
Specifically, the quantum Zeno engine with a built-in clock, constantly stabilised via energy-harvesting
measurements, is able to extract the entire free energy difference of the system as work. Conversely, if we are not
able to perfectly stabilise the clock at all times and only allow the accumulated energy to flow out of the quantum
clock and into the classical battery at finite intervals, we are naturally restricted to AW < — AF. Thisisin
accord with the second law, where equality can only be achieved under reversible protocols.

This also demonstrates a core tradeoff between work output and power. On the assumption that we are
experimentally restricted to a minimum d¢, we can either attempt to slow down the system dynamics to get
closer to the ZL at the expense of power, or vice versa get a higher power but being further from equality in
equation (14), ‘wasting’ free energy. From equation (13) we can also see that if the qubit’s |¢)) state is lowered too
fast compared to d¢, the clock is not able to sample the qubit’s thermal distribution p, (¢) quickly enough to
utilise the full free energy difference. This adds to the tradeoff between maximising power and maximising work
output.

Integrating equation (14) over 7 < t < 7, the total work output of the Zeno engine is

Wyeno = kT(log 2 — logZ(%)), (15)




10P Publishing

NewJ. Phys. 18 (2016) 023037 M F Frenzel et al

W /kT log 2

Figure 2. Ideal Wiy, (solid) and average (W) (dashed) work output for a spin-clock-driven engine against clock size I for different
stabilisation intervals dt. The red curve shows the ZL dt — 0 which quickly approaches the classical result W = kT log 2.

where Z (7) is the partition function of the qubit at maximum level splitting A (7). This shows a second
limitation we suffer if considering a realistic finite-sized machine. Even if we were able to perfectly stabilise the
clock, we are further limited by the maximum level-splitting that the clock can induce. Only in the limit of an
infinitely big (i.e. classical) clock can we reach an infinite level splitting A (7) — oo (i.e. Z(7) — 1) and thus
obtain the classical result W = kT log 2.

5. An example: the spin clock

The preceding discussion has remained abstract, and not tied to a specific physical realisation. It provides a
broad framework of quasi-autonomous quantum engines driven by measurement-stabilised clocks. However,
we can look more closely at an explicit example where a spin-I particle (dimension d = 2 I 4+ 1) acts as the clock

[12]. The joint-Hamiltonian takes the form Hgy, = %(a ® L, + 1 ® L,)which implies

2

Hy=(L,*+ L) / V2, where L is the angular momentum operator of the spin-/ particle along the k-axis. We
notice that as desired H_ and H, are also generators of SU(2) and find the third generator

C =i[H_, H;] = —L,. Asshown in the general framework, the optimal initial clock state x (0) is the eigenstate
of Cwith maximum eigenvalue, i.e. a spin fully polarised along the negative x-direction. The full clock-basis
comprises the eigenbasis of —L,.

This example is particularly nice since the spin can be viewed as the quantum-analogue of a clock hand.
Under free evolution the state  (t) simply rotates around an axis defined by H_, justlike a clock hand with
period 27. The other clock-orbits co-rotate with the reference orbit, and can essentially be seen as shortened,
fuzzy versions of the clock hand, i.e. the spin not being fully polarised in a certain direction but only partially.
Note that if there is no polarisation, for example if the clock gets too mixed, the hand disappears, we are unable to
tell the time, and so unable to induce time-dependence in the qubit. The effect of backaction from the qubit on
the clock is again a stochastic splitting of the clock hand into two parts, one following the clock-orbit, the other
one rotating out of the clock-plane.

Applying the earlier analysis to this specific model, one can explicitly calculate the work output of a spin-
clock-driven quantum engine for varying spin dimensions d and stabilisation intervals d¢. The results are shown
in figures 2 and 3. We see that in the ZL even for small clocks we quickly saturate the classical result
W = kT log 2. What might be surprising at first is that for finite d¢ there is an optimal d which is also finite. This
comes back to the issue of sampling the qubit. If the clock is too small, we are unable to raise the |t)) state high
enough before starting to thermalise. On the other hand, if the clock is too large, we raise the state very high, but
also drop it very fast and hence might not be able to sample the thermal distribution quick enough. For larger
clocks the average quickly falls below the ideal output, but then converges again in the I — oo limit since in this
case the optimal scenario starts to dominate the average due to the increasingly smaller deviation from the
reference orbit experienced by larger clocks.

Again we see that only in the limit of an infinitely large clock with infinitely fast stabilisation can the classical
limit of W = kT log 2 be recovered.
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Figure 3. Contours of work output (normalised to kT log 2) of the selective engine for clock sizes and stabilisation interval d. The
left plot shows the ideal scenario in which every measurement succeeds. The right plot is the average work output of the selective
engine.

6. Outlook

We have presented an explicit analysis of the basic requirements of a quasi-autonomous quantum thermal
machine’. Its sole purpose is to extract work from a qubit degree of freedom.

The operation of the thermal machine involves a complex interplay between certain core properties such as
quantum coherence, clock degrees of freedom, and the role of quantum measurements. It would be of
theoretical interest to provide more detailed accounts of these aspects as they relate to thermodynamics. While
we have a good framework to understand the stochastic aspects of thermodynamics [2], we do not have the same
level of clarity regarding the role that coherence has on thermodynamic processes. Such a problem can be tackled
from a variety of directions, including the present approach.

Beyond this, it would be valuable to make greater connection with current experimental progress related to
thisline of inquiry. Already there has been work in the context of optomechanical systems [68—71], and our work
has direct bearing on these models.

From the theoretical perspective it would also be fruitful to further develop the information feedback
components, and to consider quantum memory degrees of freedom at the level of the quantum thermal
machine. In particular it would be valuable to explore the role that measurements play in such systems and to
provide a fuller account for generic POVM scenarios. Ultimately this provides a useful setting to address the
interplay between information and energy flows across the quantum-classical divide.
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Appendix A. Designing a machine with SU(2) Hamiltonians

In the main text it was stated that choosing H_ and H., to be SU(2) generators, finding the clock orbit via
equation (7) becomes equivalent to finding the initial state which optimises the coherence condition (iii). Using
the definition C := i[H_, H, ] we can rewrite condition (iii) as

tr pu (O C] > 0. (A1)

This condition is optimised by choosing p,,(0) = |d) (d|where |d) is the maximum eigenvalue eigenstate of C.
Now, since H_ and H. are SU(2) generators, the definition of Cimplies that it is also a generator of SU(2), and
one can think of H_, H, and Cas representing three orthogonal axes. Since the reference clock-orbit evolution
isgivenby x (t) = exp[—iH_t]|d) (d| exp[iH_t],1.e. rotating a state that lies initially along the axis defined by C
around the orthogonal axis defined by H_, we are guaranteed that for some time t = 7, the state x (7) will
coincide with the eigenstate of H; which optimises equation (7).

Note that while our discussions were focused on a machine operating on pure qubits, the same derivations generalise to arbitrary
d-dimensional systems and mixed input states (appendix G).
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Due to the symmetry properties of SU(2) (the generators essentially defining orthogonal axes), condition (ii)
is satisfied for any state |m) in the eigenbasis of C, not only the optimal state |d), since the expectation values of
H, and H_ with respect to the eigenstates of C are zero. Thus, since the clock orbits are defined with evolution
under U_ only, and U_ and H_ commute, condition (ii) is in fact satisfied at all times if the clock is on any of the
reference orbits | (¢) ). Thus the set of d clock orbits { |7 (#) ) }1 <.n<a defines a zero energy surface with respect
to the qubit’s |¢) state.

Finally, since as noted above (m|H_|m) = 0 = (m|H,|m) forall m,and H; = %(H+ — H_), condition (i)

is also satisfied for all eigenstates of C. This condition does however in general only hold at the initial time t = 0
and after a complete period t = 7. The fact that for times 0 < ¢ < 7 this condition is broken allows us to induce
time-dependent level-splittings with respect to the clock orbits, while the fact that it holds for any complete
period t = nr allows us to freely switch between the different |m) states and reset the engine to the reference
orbit without any energy cost in case it was projected on a different orbit during the cycle.

These considerations show that, while not necessary, it is very desirable to design the quantum thermal
machine M in such a way that H are SU(2) generators.

Appendix B. The protocols in detail

In this section we shall analyse the engine protocol outlined in the main text in more detail. The protocol starts
with the joint system-machine system in the state p (0) = [¢) (¥| ® x (0).

The initialisation phase consists of free evolution of the initial state p (0) for a time 7 at which point the
qubit’s induced level-splitting

A(t) = tr[pM(t)m] (B1)

attains a maximum A, = A(F). This free evolution leaves the qubit state unchanged and rotates the clock
stateinto x (%) = |d (%)) (d (¥) |, the maximum eigenvalue eigenstate of H,.

We now start the actual work extraction process which takes place from 7 < t < 7 and is broken down into
N = 77 subroutines of duration dt, which we call UPs. These subroutines are further broken down into three
steps as outlined in (a)—(c).

B.1. Thermalisation
The first step of each UP is thermalisation of the qubit with respect to its local Hamiltonian Hg(#) induced by the
state of the clock. Assuming that the clock is on the reference orbit at time #, the joint state after thermalisation is

pt) =) @ x (), (B2)

where v (t) = p, () 1) (Y| + p, () |¥) (¥ ]is the Gibbs state with respect to the reference clock orbit at time ¢
suchthat p,(t) = (1 + e #2Oyland p,(t) = 1 — p,(t)and A(¢) = (d(t)|H,|d(t)).

If on the other hand the previous measurement projected the clock onto a different orbit # and we keep the
engine running (as is the case in the unselective protocol), the qubit’s local mean-field Hamiltonian takes on a
different form, giving it a different level-splitting and thus thermalising to a different Gibbs state
~v(t|m) = pém) ) (W] + pl(’”) (£)|9) (1) |, where the thermal probabilities are defined as above but with
respect to the level-splitting A (¢ |m) = (m (¢)|H, |m(¢)), leading to a post-thermalisation joint state of

p(tlm) =~ (t|m) @ |m(t)) (m(®)|. (B3)

Note that p(t|d) = p(¢), but we make the distinction to keep notation in the case of the selective engine more
concise.

B.2. Evolution

Step (b) of the UP consists of free evolution of the joint state for a duration dt. Note that for brevity we will in the
following assume that all evolution operators act for a time dt, such thate.g. U = U (dt), unless stated
otherwise. Under this evolution the state p (¢) evolvesinto p’ (t + dt) = Up(t) U'. More explicitly,

Pt +db) = p,O|Y) (Y| ® Ux(®U!
+p®[P) (¥] © Ux@UL (B4)

The first term corresponds to the clock simply evolving along the reference clock orbit for a time dt, since
Ux(t)UT = x(t + dt). The second term however corresponds to a deviation of the clock from the reference
orbit, and an injection of energy into the clock. The expression for p (t + dt|m) = Up(t|m) U hasa similar
form and interpretation, only with the reference clock orbit x (¢) replaced by the co-rotating

orbit [m (¢)) (m(1)].
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B.3. Measurement in the selective mode

Finally in the last step (¢) of the UP we perform a measurement to try and stabilise the clock and transfer the
energy it acquired during step (b) to the macroscopic measurement apparatus. The measurement that will
project the clock back onto one of the clock orbits is described by the projectors

I, (t + dt) == 1 ® |m(t + dt)) (m(t + dt)|. Applying this to the state p’ (t + dt), the post measurement state
given measurement outcome 1 is

1 —\
———— (2o O1) (] + pyOTaa(t, d)| V) (D |) @ x(t + dt) ifm=d
Pt + dt) = pd(t+dt)( ’ ! ‘ >< ‘) (B5)
|9) (D] @ Im(t + dy) (m( + do)] ifm = d,
with probability
)o@ + p(DTua(t, d) ifm =d
B (1> A1) = { P, (D na(t, db) ifm = d, (B6)
where we have defined
’ 2
T (t, di) = ‘(m (t + do)| U+‘m(t)>‘ , (B7)

This quantity I',,,,,(t, dt) can be understood as the probability of the clock transitioning into the orbit labelled
by m’ under the deviation-inducing evolution U, for duration dt, given that the the clock was in the orbit
labelled by m at time ¢. It can easily be verified that the I',,,, form a doubly stochastic matrix, with summation
over either of the two indices giving unity. Also note that if d¢is small, this matrix is diagonally dominant, i.e. the
system is more likely to remain on any given orbit than to transition to a different orbit.

From equation (B8) we can directly see that if we observe the measurement outcome m = d, the clock has
been successfully stabilised and projected back onto the reference clock orbitat x (t + dt). The qubit is steered
toaslightly altered state p’s(t + dt) o< p,(1)|¢) (| + p,(*)Tua(t, dt)|¥) (¥ |. On the other hand, if we
observe m = d, the clock transitions to a different orbit (often leading to a backflow of energy from the
measurement apparatus as we shall show below) and the qubit is instantly collapsed to |1)).

In the selective operation mode of the engine, such a ‘misfire’ of the engine, a measurement outcome m = d,
triggers an abortion of the current engine cycle and a feedback procedure that resets the engine for a new cycle.
The qubitis immediately decouple from the bath to avoid further thermalisation. Further, we need to reset the
qubit to the |)) state to ensure that the clock rotates along the clock-orbit and ends up in a state where it can be
restored to the reference orbit without any further energy cost. The flip operation is given by the unitary
Ur = (19) (§] + [¥) (¥ ]) ® land takes thestate p,, (t + dt)to p), (t + d) = [¢) (| @ |[m(r + dn))

(m(t + dt)|. This flip is not energy conserving and its cost has to be taken into account (see below). Since the
qubit is now in the |¢)) state again, we can allow the system to freely evolve for a duration 7 — (¢ + dt), resulting
inastate|¢) (Y| ® |m (7)) (m(7)|. Now, due to condition (i), we can restore the clock to the reference orbit at
X (0) for free, and the joint system is ready to begin a new cycle.

B.4. Measurement in the unselective mode

In the case of the unselective operation mode the state after measurement depends both on the measurement
outcome m’ attime t + dt, as well as the the previous measurement outcome 1 at time ¢. Explicitly, the post-
measurement state after observing m’ is given by

; (m) (m) , —\ /=
| p(m,‘m) (p0 O @1+ p™ (OT it dt)|1p> <¢|)
(' m) = @ |m' (4 dp)) (' (¢ + dt)| ol = m (B8)
|$><1’7}|®‘m/(t+dt)><m/(t+dt)‘ i£m = m,
with probability
gy RO 4 P OT e, Aty ifm = m
p(or|m) - { P (O i, d) ifm' = m. (B9)

Ifthe engine is run in the unselective mode, the engine is kept running regardless of the specific outcome ', and
the measurement is followed by the next UP, beginning with a new thermalisation to the state p (¢ + dt|m’)
equation (B3), which destroys the information of the previous measurement, resulting in a Markov process.
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Appendix C. Energy flows

Knowing all the quantum states of the system S and machine M during the entire protocol it is straightforward to
calculate the energy flows into the measurement apparatus and the thermal reservoir by invoking global energy
conservation.

C.1. Work

The energy flow into the measurement apparatus takes place during the measurement process. It is given by the
energy difference of the pre- and post-measurement quantum states. In the selective mode, given measurement
outcome m we have for the energy flow into the macroscopic apparatus

dE,,(t, dt) = tr [HSM(p/(t +dr) — p, (t + dt))]. (C1)

Substituting the explicit expressions for the states and invoking condition (ii) we find for the energy flow in the
case of the ideal measurement outcome m = d

dE,(t, dt) = pl(t)<d(t)‘AH+(t, dt)‘d(t) > (C2)
where we have defined

_ Laa@, dt) s

AH.(t, dt) == H, TH.U. (C3)
p;(t, dt)

Since 0 < I(t, dt) < 1, theratio
Thu(t, di) _ 1 <1
Pt dt)  p (@) + py(0)/Tua(, dt)
is strictly less than 1. In addition the expectation value of H. is greater than the expectation value of U ' H, U_in
equation (C2), leading to a positive energy flow into the apparatus®.

However, in the case of a misfire event, a measurement outcome m = d, we have a very different energy
flow, specifically

(CH

dE',i-a(t, dt) = p, (0 {d(0)| He | d(0))
—<m(t+dt)|H+‘m(t+dt)>. (C5)
The dash indicates that this is only part of the energy flow associated with this event (see below). Even though the
expectation value of H, with respect to the state [m (+ + dt)) is generally less than that with respect to |d (¢) ), the
factthat 0 < p,(f) < % implies that in many cases an engine misfire implies a back-flow of energy from the

apparatus into the quantum system’. Additionally applying the feedback and flipping the qubit via the unitary Uy
willlead to an additional energy cost (which we assume is taken from the work stored in the apparatus)

dE/ (¢, dt):—<m(t+dt)|H+‘m(t+dt)>. (C6)

Taking this feedback cost into account, the total energy exchange between quantum system and measurement
apparatus given a measurement outcome m = d is

dE,i-q(t, dn) = p, (0 {d(0) | H, |d(0))
—2<m(t+dt)‘H+|m(t+dt)>. (C7)

Also taking into account the cost of resetting the memory Wese (£, dt) = B71S(p (¢)) given in equation (9), we
arrive at the average work output of the UP starting at time ¢ in the selective mode of

dw (t, dt) = ) p,, (t, d)dE,, (t, dt) — dWeser (1, dt). (C8)

We can split this up and define the work associated with outcome m as
AW, (¢, dt) = dE,, (¢, dt) — dWeeet (¢, dt), (C9)

suchthat dW = Zm p,,dW,,. Using this, we find for the total work output of the selective engine averaged over a
full engine cycle

Note that this is not strictly true for every UP in general if the clock evolves along a complicated trajectory (i.e. if the level splitting A () is
not monotonically decreasing), but is always true on average over the interval 7 < ¢t < 7.

Note thatagain 0 < p, () < % is not necessarily true in general for complex clock evolution since A (¢) can in principle get negative, but it
holds on average over theinterval 7 < t < 7.
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=
Il
=

pa(7 + ndt)] idwd(% + ndt)
n=1

nj\fl—l k—1 k-1
+ [ P (7 + ndt)](l — (7 + kdr)) 3T AW (7 + nd)
k=2| n=1 w1
+ ilkl w7+ ”dt)] dil’m(% + kdt)dW, (7 + kdr), (C10)
k=1] n=1 m=1

where the first term corresponds to the work extracted in the case each of the N UPs succeeding, the second term
corresponds to the work extracted up to a misfire at the kth UP (which also aborts the cycle), and the final term
contains the energy flow of the misfire at the kth UP itself, all weighted by the respective probabilities of these
events occurring.

For the unselective engine mode, we find the energy associated with with a transition from the clock orbit m
attime t to the orbit m’ at time t + dt (see equation (11)) as

dE(m/‘m) = plm(t)<<m‘H+|m>
— —Fm/m
p(m'|m)

where we have omitted the explicit time dependence for notational brevity.
The probability of a complete engine trajectory m = {mx, mz,g, ..., m, } overall N UPsis

(m’|H+|m’> ) (C11)

p(m) = P(m%) ﬁ P(m’r+ndt m%+(n71)dt)) (C12)
n=1

where the inclusion of 715 in the trajectory allows for the scenario in which the clock begins the protocol on a
orbit other than the reference orbit. The total energy flow over this trajectory is

N
E(m) = Y dE(mrp

n=1

mi’+(n71)dt)- (C13)

Finally at the end of the engine cycle we have to reset the memory which is associated with a work cost
Wieset = 871S({p(m) }), such that the total average work output of the unselective engine is given by

(W), = _pm)E@m) — 37'S({p(m)}). (C14)
Where we have averaged over all possible engine trajectories.

C.2.Heat

During step (a) of each UP the qubit thermalises with respect to its induced local Hamiltonian by interacting
with the thermal reservoir at inverse temperature (3. Before the thermalisation at time ¢ + dtthe qubitisin the
state

by (1)

, - P (OTaa(t, db) (- /—
p's(t + dt) = o 5, D) 1) (W] + W ‘ >< ‘
= ¥ 1) Wl + o | 7) (7] (©1>

as can be seen from equation (B8). Since in general p, (t 4+ dt) < p,(t)and p,(t + dt) > p,(¢) (since

A(t 4+ dt) < A(t)),and po* > p,(t)and pl>k < p,(t), we see that the interaction of the qubit with the machine,
and the back-action of the measurement process on the machine actually drive the qubit even further away from
its thermal state at time ¢ + dtthan it would have been otherwise, leading to an increased heat flow required to
thermalise the qubit. Specifically the heat flow during the thermalisation at time ¢ + dtis given by

dQ(t + dr) = tr[H5M<p(t +dr) — py(t + dt))]

L (t, dt)

At + db). C16)
B (8, dt) ) ( (

= [p1(t +dt) — Pl(t)

The heat flow in the classical case is given by the same expression but without the ratio I, (¢, dt)/p, (t, dt) < 1,
showing that the fully quantum mechanical protocol has a higher heat flow associated with it. However, as we
hall show below, this ratio approaches 1 in the ZL, such the the classical result can be recovered even for
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finite-size quantum machines, as long as they can be stabilised infinitely fast. A similar result can be derived for
the unselective mode of operation.

Appendix D. ZL derivations

In this section we derive the results for the ZL dt — 0, in which the clock is stabilised with infinite fidelity, and
energy flows constantly out of the quantum machine into the measurement apparatus.
Let us first consider the quantity I',,,,, defined in equation (B7). We can rewrite it as

2

Lo (t, de) = | (' (0)] e dte i i (1) )| (1)
Expanding the exponential functions ignoring terms of order O(dr2) or higher we have
Tty dt) ~ | (m' @|(1+ iH_de) (1~ iH,de) | mn) |2
|Gt + 1 O H — H [ mo)) de|
= im — O(d?). (D2)

Thus the probability of the clock staying on a certain orbit m, despite the deviating inducing evolution generated
by H., is equal to unity up to first order in dt. Crucially this includes the clock orbit d such
that Tj;(¢, dt) = 1 — O(dt?).

Having established the limiting value of this central quantity, we can now consider the probability
distribution over measurement outcomes p(t). Specifically, we are interested in the probability associated with
the clock being projected back onto it’s reference orbit, assuming it started the UP in this orbit, i.e. the
probability p, (¢, dt) equation (B6) in the selective case, and p (d|d) equation (B9) in the unselective case. We
first note that p, (¢, dt) = p(d|d). We have

by (8, dt) = py (1) + Lua(t, db)p, (1)
= py(8) + p, (1) — O(dr?)
=1-0(d?), (D3)
Thus in the ZL we are guaranteed to project back onto the reference orbit and the selective and unselective

protocols become equivalent. From this result it also immediately follows that the cost of resetting the memory
vanishes for both operation modes as W,eieq = O(dt?). Thus from equation (10) we have

dw (t, dt) = dE4(t, dt) — O(dtz). (D4)

To find an expression for dE, (¢, dt) in the dt — 0 limit we see from equations (C2) and (C3) that we need to

MUiHJrU_.Fortheratiowe ﬁndrdd(t—’dt) = 1 — (O(dt?) as can be verified
By (t, dr) B, dr)

by substituting equations (D2) and (D3). For the other factor we have upon expanding the exponential functions

evaluate the expression

U'H U = (1 + iH_dt)H (1 - iH_dt) + O(dr?)
=H, — iH,H dt + iH_H dt + (’)(dtz)

=H, + i[H_, H+]dt + (’)(dt2) (D5)
from which it follows that

AH.(t, dt) = —i[H,, H+]dt + C’)(dtz). (D6)

Finally, substituting this expression into equation (C2) and the result into equation (D4) we arrive at the result
for dW (t, dt) equation (13).

Let us now focus on the free energy change of the qubit to prove equation (14), showing that in the ZL the
entire free energy difference can be extracted as work. Given the fact that we fixed the qubit’s |¢)) state to zero
energy via condition (ii), the partition function at time tis givenby Z (t) = 1 + e #2® where
A(t) = tr[x (t)H], where we have assumed that the clock is on the clock orbit x () as we showed is always the
case in the ZL. The change in free energy of the qubit is thus
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dF(r):d(—ﬁ*llogZ(t))
Al 4z,

_ dz D7
Z(t) dt (D7)
Differentiating the partition function with respect to t we get
dZ dA 7’{A(t)
— = —pg—ef . D8
dt g dr 8
The energy splitting of the qubit varies in time as
dA d
—=—t tH)H
= txoH]
_d t
= tr[ U(t)y(0)U' (t)H+]
—itr [x(t)[H,, H+]]. (D9)

Finally, recognising that %(At:) = p,(¢) and substituting everything into equation (D7), we see that
dF (r) = —dW (¢, dt) up to first order in d¢, which concludes the proof of equation (14).

Integrating equation (D7) over the interval 7 < t < 7 and noting that Z (7) = 2 due to the qubit’s
degeneracyat t = 7, equation (15) follows immediately.

Appendix E. Detailed analysis of the spin-clock

As outlined in the main text, for the specific example of a spin-I system acting as quantum machine/clock we
choose the Hamiltonian

1
Hgy = f((j@ L.+1®L,), (E1)
suchthat HL = % (L, + L), where L is the angular momentum operator of the spin-/ particle along the
k-axis. The angular momentum operators Ly clearly are SU(2) generators, and the operators H_. can also be seen
as angular momentum operators defining a new coordinate system. The third SU(2) generator can be found via
the commutation relation

C= i[H,, H+] = —L,. (E2)

Thus we see that this new coordinate system has essentially been flipped along the x-axis as well as rotated in the
y-z-plane. The ideal clock state we want to choose is the maximum eigenvalue eigenstate of C, i.e. a spin fully
polarised along the negative x-direction. We define the eigenbasis { |m) } _;j<n<;suchthat C |m) = m |m). Note
that here we use a slightly different convention from the remainder of the text where 1 < m < d. Thisis more
suited to the angular momentum eigenbases. The state on the reference clock orbit at time ¢is thus given by

X (@) = U (1| UL@). (E3)

Considering the rotation generated by U_ (or using the more formal Wigner matrix derivation introduced
below), it is straightforward to show that the level splitting of the qubit induced by a clock on this orbit is simply

A(t) = Isint. (E4)

We see that the maximum level splitting that this clock can induce is Ay,,x = latatime 7 = 7/2. Note also that
even though the period of the clock is technically 7 = 2, it is preferable to stop the machine earlier at 7/ = 7,
since the qubit is degenerate again at this time with respect to all clock orbits, and keeping the engine running for
the remaining period would at best (namely in the ZL) lead to no additional work gain. Even though this was not
explicitly stated in the main text, whenever the qubit is degenerate with respect to all clock orbits for some time
t = 7' < 7 itis preferable to stop the engine there and ‘run the engine in neutral’ for an additional time 7 — 7'
to get back to the original setup.

For the spin-clock we can explicitly evaluate the quantity I',,,,, defined in equation (B7). Starting from the
definition we have

2
T (2, df) = ‘ ('t + dn)| U (dn) | m(n)) ‘

| (o

QI (t4d1) g —iH ,(d1) g—iH (1) ‘ m> | 2 (E5)
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which looks very similar to the Wigner D-matrix [72]
Dym(e, B, 9) = (m] m.)
= ei(marm)d, ., (8) (E6)
where the Wigner d-matrix d,,,,, (3) is defined as

I—m' / / 21—-m—m'—20
dl, (@)= | LEmiom. Z( Hom )(l"“)(l)’m’a(smﬁ)
(l—i—m)!(l—m)!g:o I+m—o o 2

m+m'+20
X (cos g) " . (E7)

In (E6) the states |72,) and |m,) are eigenstates of the L, operator. However, in equation (E5) the states are
eigenstates of C, not H_, we thus have to introduce two identity decomposition in the H_ basis {|k_) } to make
use of equation (E6). We have

efiLzaefiLyﬁefiLz'y

2

L m(t, df) l< m’| ki> <ki| eiH*(““d’)e*iH*(dt)e*iH*(‘)| k,> <k,| m>

ko k! =-1

2

= i Dy (—(t + db), dt, t)<m’|ki><k,|m>
k'=—1

) (k)

|m_) and using the D-matrix result equation (E6) again we have

(k_|m) = (k_|e ""/2\m_) = Dy, (0, g, 0) = dkm(g) and similarly (m’|k”) = dm/k/(—g).Hencewe

arrive at

1 2
- v e—i(kt—k’(t+dt))dk,k(dt)<m’ (E8)
k=1

—iH,7/2

Finally, noting that |m) = e

2

Fm/m(t) dt) = (E9)

I
S (kK erdn) gy, (dt)d’”'k/( - E)dkm ( z)
k=1 2 ?

This might not look more illuminating than the original expression, but the d-matrices are well known functions
and can easily be evaluated computationally, allowing us to explicitly calculate results for the spin-clock example.
We used this expression to generate the results shown in figures 2 and 3. All other results follow by simply
substituting this result into the relevant expressions.

Let us conclude the analysis of the spin-clock example with the work output in the ZL. Starting from
A(t) = I sin t we have

dF (t) = p, ()] cos(t)dt (E10)
which upon integration from s < t < myields
Wreno = kT(log 2 — log(l + e’m)). (E11)

This is the maximum work that can be extracted from a pure qubit if one is limited to utilise a spin-Isystem as a
clock/machine and a thermal reservoir at inverse temperature 3 = 1/kT. We see that the the semi-classical
W = kT log 2 can only be recovered for infinitely large clocks I — oo (or for zero temperature 5 — o).

Appendix F. Simulating different thermalisation regimes

As noted in the main text, to obtain the analytic results we have to make the assumption that the thermalisation
of the qubit takes place at the beginning of each UP, right after the measurement of the preceding UP. Thus
evolution (b) and thermalisation (a) are in a sense non-interacting, separated by the measurement (c). In this
section we present simulation results that do not rely on this assumption but instead model non-trivial
interactions between thermalisation and evolution, and hence show that the approximation is qualitatively
robust in all the regimes considered.

We consider two ways of avoiding the assumption. In the first one, we simply split each UP further into 3
sub-units of duration d#’ = dt/ng, each consisting of thermalisation of the qubit followed by free evolution of
the joint system for duration d¢’. The measurement is still only performed once per UP, at the end. Note that
whereas in the main text the qubit always thermalises with respect to the local Hamiltonian induced by the
reference clock orbit (), the thermalisations in between tand t 4+ dtare with respect to the local Hamiltonian
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W /KT log 2

0 5 10 15 20
l
Figure F1. Ideal work output of a machine with a spin-/ clock and stabilisation interval dr = 0.05, plotted against clock size  for
different numbers of thermalisation 73 per unit protocol. The 73 = 1resultis in exact agreement with the analytic result for

dt = 0.05in figure 2. The higher the value of 13, the more continuous the state transformation of the qubit, i.e. the more quasi-static
the protocol, leading to greater work output. The dashed line shows the ZL.

induced by the clocks momentary state, which in general deviates from the reference orbit between
measurements. The more sub-units 73 we consider, the more quasi-static the process becomes as the qubit more
and more smoothly transitions from one thermal state to the next. Due to the immediate backaction into the
clock by the joint evolution, this can be seen as the machine scanning the thermal distribution with a higher
fidelity. In the limit n3 — oo the process becomes a quasi-static equilibrium process and the work output is
maximised. The results for the optimal scenario in which each measurement succeeds are shown in figure F1 for
aspin-I clock with stabilisation interval dt = 0.05 for different numbers of sub-units #5. Note that the analytic
result (which is equivalent to n3 = 1in the simulations) is not necessarily more or less realistic than the results
for higher ng > 1, but can be seen as a non-equilibrium result similar to a finite thermalisation time of the qubit.

To consider an even more realistic model of non-equilibrium behaviour, we can further introduce the
notion that during each thermalisation stage the qubit is not instantaneously transformed into a Gibbs state, but
instead undergoes an equilibration with a bosonic bath at a finite rate, evolving according to a standard master
equation [73]. The mean bosonic occupation number 7 is given by

1
= — (F1)
e™ — 1

for a mode of frequency w, and we assume that at any time ¢ the qubit only couples to the mode which it is in
resonance with, i.e. for which w = A(#). We further define the clock’s states with respect to the qubit’s |+/) and
|1) states as

o = (0] o] ) (F2)
pg/[ = <@‘PSM‘E> (F3)

respectively. Using this notation it can be shown that equilibration of the qubit with a bosonic bath for an
effective duration 73 takes the joint qubit-machine state pg,, to

p;M X |w> <¢| & (Cw—wd;p?/[ + CU_"/pdA;I)
+ |E> <E‘ & (Cdrﬂ?}pﬁ + C@H@px[)’ (F4)
where the C_,, transition coefficients are given by

e () 4741

Cop = 27 + 1 ’ )
e ()i +1) = (7 + 1)
Cov = 2 + 1 ’ o
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Figure F2. Ideal work output of a machine with a spin-/ clock and stabilisation interval dt = 0.05, plotted against clock size I for
ng = 5 finite rate equilibrations per unit protocol with different effective equilibration times 73. The analytic result with 73 = 1and
infinite equilibration rate 7 is shown for comparison. Faster equilibration (larger 73) implies an evolution of the qubit closer to
equilibrium and thus larger work output. Note that for large I the qubit’s upper level drops faster, so that the qubit is further from
equilibrium for the same equilibration rate, leading to reduced work output for large I.

e’(Zﬁ“)”(ﬁ - 1)

Cypp=— , F7

Y= 27+ 1 (F7)
e (it + 1) + 7

Co_g = . F8

o 21+ 1 (E8)

In the limit 73 — oo this model of equilibration corresponds to the instantaneous transformation to the Gibbs
state considered above, but for finite 75 the reduced state of the qubit will in general ‘lag behind’ the Gibbs state.
Using this finite time equilibration in combination with the previous notion of breaking each UP into multiple
sub-units of equilibration and evolution before the final measurement allows us to model very realistic non-
equilibrium behaviour. Figure F2 shows the results for the spin-clock model for n3 = 5 equilibration events
and different effective thermalisation times 73. The analytic result corresponding to #3 = land 73 — ocisalso
shown for comparison.

We see that for very large I the work output of the machine is drastically reduced and approaches zero in the
limit of large I. This is due to the fact that in this specific model the level splitting of the qubitis A(¢) = I sin t,
and thus the larger /, the faster the level splitting changes, requiring longer effective equilibration times 73 to
keep the qubit close to its respective Gibbs state. This is in some sense equivalent to the notion encountered in
the analytic results in the main text that a larger clock (i.e. faster change in level splitting) requires the machine to
sample the qubit’s thermal distribution at a higher rate in order to get a good work output. We again clearly see
the tradeoft between maximising work output and maximising power. If we want to achieve an optimal work
output we have to slow down the system dynamics (which in effect increases the ratio of effective equilibration

time 73 to the change in level splitting d—), which in turn reduces the power output of our engine. Conversely,
t

increasing the power by increasing the rate of system dynamics we end up further away from the ZL where we
can convert the entire free energy difference of the qubit into work, thus sacrificing potential work output. Even
though the exact quantitative result strongly depends on the model parameters, we see from the results of this
section that the analytic result based on the assumption of a single instantaneous thermalisation during each UP
qualitatively contains all the core features and even quantitatively accurately captures the results for certain
realistic thermalisation regimes of non-equilibrium dynamics. Particularly as we approach the ZL all results
exactly converge, if we assume a very strong coupling between qubit and bath, such that the qubit always remains
(approximately) in thermal equilibrium.

Appendix G. Fuelling the engine with mixed states

In this section we consider a slight variation of the selective engine mode discussed in the main text and show
how the engine behaves if instead of pure states we try and fuel it with (partially) mixed states. If we consider the
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machine as a black-box system which takes some state pg as an input, generates work, and outputs a new state p;k,
we can say that if given the ideal input py = |1) (1| for which the engine was designed, we get the state

1
s = g7 + A= D) (@ (G1)

as the output, where g = HiV:l p; (7 4 ndt)is the probability that all N UPs succeed an we finish the cycle
with a maximally mixed qubitin the state 1/2,and (1 — q) is the probability that some UP fails and we perform
the feedback process which returns the qubit to the original state | 1)) (1 |. The work output associated with this
state transformation pg — gy is (W) equation (C10). The machine itself is unchanged and will by the design of
the protocol always be in the state x () after outputting p?, thus effectively acting as a catalyst.

But we can also ask what happens if instead of inputting the pure state p into the engine, we try and feed the
engine its own output state, the mixed p?. We can rewrite the state as

gi=(1- i+ 2 [5)(3). @)

If we feed this state into the engine, note that the initial stage for times 0 < ¢ < 7 is now not just the trivial level
splitting induction in the qubit anymore, but also leads to a deviation of the qubit from its clock orbit. Thus we
need to introduce one additional measurement before the first thermalisation to project the clock back onto its
reference orbit”. The probability P(V of this measurement failing in projecting the clock back onto y (t) is
given by

PO = gmzl <m(7’)|U+(7')‘d> |2, (G3)
_ g;}rmd( %), (G4)
- g(l — Tu(0, %)) (G5)

If this event occurs, the engine immediately starts a feedback process returning the qubit in the |4) (1| at the end
of the cycle. Otherwise, since the qubit is now at time t = 7 back on its reference orbit and the qubit gets
thermalised just as if it would have on input of the ideal state |1)) (1|, the machine proceeds for the remainder of
the cycle 7 < t < 7 justasin the original protocol. As noted above, this second part, containing the actual work
extraction, has a misfire and feedback event with a probability

N
PO =1-T] pd(% + ndt). (G6)
n=1
Putting both parts together, the chance of the machine experiencing feedback entering the feedback procedure
atany point and thus returning the pure state |1)) is
p() = PM 4 (1 — PW)P@, (G7)

whereas the engine completes the full cycle and outputs the maximally mixed state 1/2 with probability

p(%) - (1 - p<1>)(1 - p<2>). (G8)

This allows us to ask for which g = ¢* the machine outputs the same state that it got as its input. This condition

is met when g* = p(%), L.e. for

g = (1 - %*(1 ~ Tu(0, 7))) ﬁ £ (7 + ndt). (G9)
n=1

In general this quantity depends on the specific machine, but we can explicitly evaluate it in the case of the spin

clockin the infinite size limit d — oo. In this case we have I;;(0, 7) — 0and Hfj: G ndt) — 1such

that after rearranging we find ¢* = %

One might intuitively expect that if the engine returns the same state that it got as an input, that at bestithasa
zero net work output. By explicitly calculating the relevant expressions it can easily be shown that for the
stationary state with ¢ = 2/3 in the limit of a machine with d — 00, the energy transferred to the measurement

apparatusis AE = %kT log 2, whereas the resetting cost of the memory is Wegee = kT (log 3 — % log 2) such

Note that the introduction of this additional measurement in the original protocol, which assumes pure state inputs, would be trivial since
in that scenario the state commutes with the measurement.
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that AE — Weer = kT (g log2 — log 3) < 0. Thus the net work output in this scenario is strictly negative.

More realistic machines with finite d have even lower work output. This result should not be very surprising,
since a state a state with ¢ = 2/3 is closer to being maximally than being pure.

Instead of asking which state is stationary under the action of the machine, we can also ask which state leads
to a zero net work output, such that all states more pure than this state would result in positive work. We know
that such a state has to be less mixed than the stationary state, i.e. have ¢ < g*. The exact value will again strongly
depend on the specific clock/machine used, but we can once more consider the classical equilibrium limit of an
infinitely large clock d — oo and the qubit being kept in equilibrium with the bath. Assuming the engine gets
that far, the actual work extraction stage in this limit always succeeds, outputting an amount kT log 2 of work.
Thus it all comes down to the probability P(V of the first stabilising measurement at t = 7 failing or succeeding.
The measurement itself can easily be shown to induce a zero energy change on average (although each individual
measurement result has different energy flows associated with it). Hence the total average energy transferred by

theengineis AE = (1 — PW)kT log 2 which in this specific limit is equivalent to AE = (1 — g)kT log 2.
The memory erasure cost during the actual work extraction stage 7 < t < 7 vanishes in this limit, so the only

erasure cost required is the one of the initial measurement at = 7 which is given by

Weeset = KTS({PD, 1 — PD}) = kTS({%, 1 — %}).Hence the state with zero energy output has g = ¢’

/ / / / /
q ., 4 q q
1 - =|log2=—-"log=— —[1 - = [log[ 1 — = |. G10

This equation can be solved numerically to yield ¢’ ~ 0.454. Forany q < ¢’ the machine has a net positive work
output, whereas for more mixed states with g > g’ the work output is negative. For realistic machines away
from the infinite d and perfect thermalisation limit we require even smaller g (i.e. more pure states) for a positive
work output.

which satisfies
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