122 research outputs found

    Frequency domain model for analysis of paralleled, series-output-connected Mapham inverters

    Get PDF
    The Mapham resonant inverter is characterized as a two-port network driven by a selected periodic voltage. The two-port model is then used to model a pair of Mapham inverters connected in series and employing phasor voltage regulation. It is shown that the model is useful for predicting power output in paralleled inverter units, and for predicting harmonic current output of inverter pairs, using standard power flow techniques. Some examples are compared to data obtained from testing hardware inverters

    Distortion and regulation characterization of a Mapham inverter

    Get PDF
    Output voltage Total Harmonic Distortion (THD) of a 20kHz, 6kVA Mapham resonant inverter is characterized as a function of its switching-to-resonant frequency ratio, f sub s/f sub r, using the EASY5 engineering analysis system. EASY5 circuit simulation results are compared with hardware test results to verify the accuracy of the simulations. The effects of load on the THD versus f sub s/f sub r ratio is investigated for resistive, leading, and lagging power factor load impedances. The effect of the series output capacitor on the Mapham inverter output voltage distortion and inherent load regulation is characterized under loads of various power factors and magnitudes. An optimum series capacitor value which improves the inherent load regulation to better than 3 percent is identified. The optimum series capacitor value is different than the value predicted from a modeled frequency domain analysis. An explanation is proposed which takes into account the conduction overlap in the inductor pairs during steady-state inverter operation, which decreases the effective inductance of a Mapham inverter. A fault protection and current limit method is discussed which allows the Mapham inverter to operate into a short circuit, even when the inverter resonant circuit becomes overdamped

    Altered photoreceptor metabolism in mouse causes late stage age-related macular degeneration-like pathologies

    Get PDF
    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. While the histopathology of the different disease stages is well characterized, the cause underlying the progression, from the early drusen stage to the advanced macular degeneration stage that leads to blindness, remains unknown. Here, we show that photoreceptors (PRs) of diseased individuals display increased expression of two key glycolytic genes, suggestive of a glucose shortage during disease. Mimicking aspects of this metabolic profile in PRs of wild-type mice by activation of the mammalian target of rapamycin complex 1 (mTORC1) caused early drusen-like pathologies, as well as advanced AMD-like pathologies. Mice with activated mTORC1 in PRs also displayed other early disease features, such as a delay in photoreceptor outer segment (POS) clearance and accumulation of lipofuscin in the retinal-pigmented epithelium (RPE) and of lipoproteins at the Bruch\u27s membrane (BrM), as well as changes in complement accumulation. Interestingly, formation of drusen-like deposits was dependent on activation of mTORC1 in cones. Both major types of advanced AMD pathologies, including geographic atrophy (GA) and neovascular pathologies, were also seen. Finally, activated mTORC1 in PRs resulted in a threefold reduction in di-docosahexaenoic acid (DHA)-containing phospholipid species. Feeding mice a DHA-enriched diet alleviated most pathologies. The data recapitulate many aspects of the human disease, suggesting that metabolic adaptations in photoreceptors could contribute to disease progression in AMD. Identifying the changes downstream of mTORC1 that lead to advanced pathologies in mouse might present new opportunities to study the role of PRs in AMD pathogenesis

    Alteration of Retinal Rod Outer Segment Membrane Fluidity in a Rat Model of Smith-Lemli-Opitz Syndrome

    Get PDF
    Smith-Lemli-Opitz syndrome (SLOS) is caused by an inherited defect in the last step in cholesterol (Chol) biosynthesis, leading to abnormal accumulation of 7-dehydrocholesterol and decreased Chol levels. Progressive retinal degeneration occurs in an animal model of SLOS, induced by treating rats with AY9944, a selective inhibitor of the enzyme affected in SLOS. Here we evaluated alterations in the biochemical and physical properties of retinal rod outer segment (ROS) membranes in this animal model. At 1 month of AY9944 treatment, there were modest alterations in fatty acid composition, but no significant differences in cis-parinaric acid (cPA) spectroscopic parameters in ROS membranes from treated versus control rats. However, at 3 months, ROS docosahexaenoic acid (DHA) content was dramatically reduced, and cPA fluorescence anisotropy values were decreased, relative to controls. Also, 1, 6-diphenyl-1, 3, 5-hexatriene exhibited decreased rotational motion and increased orientational order in ROS membranes from 3 month-old AY9944-treated rats, relative to controls. No significant changes in protein:lipid ratios were observed; however, rhodopsin regenerability was compromised by 3 months of treatment. These findings are consistent with reduced ROS membrane fluidity in the SLOS rat model, relative to controls, primarily due to the dramatic reduction inmembraneDHA levels, rather than altered sterol composition

    Progress and challenges in coupled hydrodynamic-ecological estuarine modeling

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 39 (2016): 311-332, doi:10.1007/s12237-015-0011-y.Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.NKG, ALA, and RPS acknowledge support from the USGS Coastal and Marine Geology Program. DKR gratefully acknowledges support from NSF (OCE-1314642) and NIEHS (1P50-ES021923-01). MJB and JMPV gratefully acknowledge support from NOAA NOS NCCOS (NA05NOS4781201 and NA11NOS4780043). MJB and SJL gratefully acknowledge support from the Strategic Environmental Research and Development Program—Defense Coastal/Estuarine Research Program (RC-1413 and RC-2245)

    Down by the riverside: urban riparian ecology

    Get PDF
    Riparian areas are hotspots of interactions between plants, soil, water, microbes, and people. While urban land use change has been shown to have dramatic effects on watershed hydrology, there has been surpris- ingly little analysis of its effects on riparian areas. Here we examine the ecology of urban riparian zones, focusing on work done in the Baltimore Ecosystem Study, a component of the US National Science Foundation's Long Term Ecological Research network. Research in the Baltimore study has addressed how changes in hydrology associated with urbanization create riparian "hydrologic drought" by lowering water tables, which in turn alters soil, vegetation, and microbial processes. We analyze the nature of past and cur- rent human interactions with riparian ecosystems, and review other urban ecosystem studies to show how our observations mirror those in other cities

    To formalize or not to formalize: women entrepreneurs’ sensemaking of business registration in the context of Nepal

    Get PDF
    Despite the depiction of decisions to formalize informal firms as rational and ethical, many entrepreneurs in developing countries continue to operate informally regardless of its perceived illicit status. While existing research on why entrepreneurs choose informality emphasizes the economic costs and benefits of such decisions, this often overlooks the realities of the informal economy and the constraints which marginal populations—particularly women—face. In this paper, we use institutional theory and sensemaking to understand the experiences of women in the informal economy and what formalization means to them. We use a qualitative approach to collect data from 90 women entrepreneurs in three different cities in Nepal. In our findings, we identify three groups of women with distinctive understandings of formalization—business sustainability, livelihood sufficiency and strategic alignment. Their interpretation of formalization reveals the complex, dynamic, and cyclical nature of formalization decisions. Decisions are also guided by the optimization of social and emotional logics, whereby formalization is conceived differently depending on different life stages, experiences within the informal economy and wider socio-cultural contexts. Our findings highlight the ethical implications of formalization where being a ‘good citizen’, rather than complying with formal rules and regulations, is about attuning to and fitting in with socially prescribed roles. Our research provides a nuanced view of formalization decisions, challenging idealized and ethical notions of formalization as a desired end state

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits
    corecore