2,346 research outputs found

    Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy

    Get PDF
    Background Acute promyelocytic leukemia is a subtype of acute myeloid leukemia characterized by the t(15;17). The incidence and prognostic significance of additional chromosomal abnormalities in acute promyelocytic leukemia is still a controversial matter. Design and Methods Based on cytogenetic data available for 495 patients with acute promyelocytic leukemia enrolled in two consecutive PETHEMA trials (LPA96 and LPA99), we analyzed the incidence, characteristics, and outcome of patients with acute promyelocytic leukemia with and without additional chromosomal abnormalities who had been treated with all-trans retinoic acid plus anthracycline monochemotherapy for induction and consolidation. Results Additional chromosomal abnormalities were observed in 140 patients (28%). Trisomy 8 was the most frequent abnormality (36%), followed by abn(7q) (5%). Patients with additional chromosomal abnormalities more frequently had coagulopathy (P=0.03), lower platelet counts (P=0.02), and higher relapse-risk scores (P=0.02) than their counterparts without additional abnormalities. No significant association with FLT3/ITD or other clinicopathological characteristics was demonstrated. Patients with and without additional chromosomal abnormalities had similar complete remission rates (90% and 91%, respectively). Univariate analysis showed that additional chromosomal abnormalities were associated with a lower relapse-free survival in the LPA99 trial (P=0.04), but not in the LPA96 trial. However, neither additional chromosomal abnormalities overall nor any specific abnormality was identified as an independent risk factor for relapse in multivariate analysis. Conclusions The lack of independent prognostic value of additional chromosomal abnormalities in acute promyelocytic leukemia does not support the use of alternative therapeutic strategies when such abnormalities are found

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    Two step activation of FOXO3 by AMPK generates a coherent feed-forward loop determining excitotoxic cell fate

    Get PDF
    Cerebral ischemia and excitotoxic injury induce transient or permanent bioenergetic failure, and may result in neuronal apoptosis or necrosis. We have previously shown that ATP depletion and activation of AMP-activated protein kinase (AMPK) during excitotoxic injury induces neuronal apoptosis by transcription of the proapoptotic BH3 only protein, Bim. AMPK, however, also exerts pro-survival functions in neurons. The molecular switches that determine these differential outcomes are not well understood. Using an approach combining biochemistry, single cell imaging and computational modeling, we here demonstrate that excitotoxic injury activated the bim promoter in a FOXO3-dependent manner. The activation of AMPK reduced AKT activation, and led to dephosphorylation and nuclear translocation of FOXO3. Subsequent mutation studies indicated that bim gene activation during excitotoxic injury required direct FOXO3 phosphorylation by AMPK in the nucleus as a second activation step. Inhibition of this phosphorylation prevented Bim expression and protected neurons against excitotoxic and oxygen/glucose deprivation-induced injury. Systems analysis and computational modeling revealed that these two activation steps defined a coherent feedforward loop; a network motif capable of filtering any effects of short-term AMPK activation on bim gene induction. This may prevent unwanted AMPK-mediated Bim expression and apoptosis during transient or physiological bioenergetic stress

    Full-bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene microtransistor depth neural probes

    Get PDF
    Mapping the entire frequency bandwidth of brain electrophysiological signals is of paramount importance for understanding physiological and pathological states. The ability to record simultaneously DC-shifts, infraslow oscillations (<0.1 Hz), typical local field potentials (0.1-80 Hz) and higher frequencies (80-600 Hz) using the same recording site would particularly benefit preclinical epilepsy research and could provide clinical biomarkers for improved seizure onset zone delineation. However, commonly used metal microelectrode technology suffers from instabilities that hamper the high fidelity of DC-coupled recordings, which are needed to access signals of very low frequency. In this study we used flexible graphene depth neural probes (gDNPs), consisting of a linear array of graphene microtransistors, to concurrently record DC-shifts and high-frequency neuronal activity in awake rodents. We show here that gDNPs can reliably record and map with high spatial resolution seizures, pre-ictal DC-shifts and seizure-associated spreading depolarizations together with higher frequencies through the cortical laminae to the hippocampus in a mouse model of chemically induced seizures. Moreover, we demonstrate the functionality of chronically implanted devices over 10 weeks by recording with high fidelity spontaneous spike-wave discharges and associated infraslow oscillations in a rat model of absence epilepsy. Altogether, our work highlights the suitability of this technology for in vivo electrophysiology research, and in particular epilepsy research, by allowing stable and chronic DC-coupled recordings

    Measurement and Interpretation of Fermion-Pair Production at LEP energies above the Z Resonance

    Full text link
    This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.Comment: 79 pages, 16 figures, Accepted by Eur. Phys. J.

    A Determination of the Centre-of-Mass Energy at LEP2 using Radiative 2-fermion Events

    Full text link
    Using e+e- -> mu+mu-(gamma) and e+e- -> qqbar(gamma) events radiative to the Z pole, DELPHI has determined the centre-of-mass energy, sqrt{s}, using energy and momentum constraint methods. The results are expressed as deviations from the nominal LEP centre-of-mass energy, measured using other techniques. The results are found to be compatible with the LEP Energy Working Group estimates for a combination of the 1997 to 2000 data sets.Comment: 20 pages, 6 figures, Accepted by Eur. Phys. J.

    A Measurement of the Tau Hadronic Branching Ratios

    Get PDF
    The exclusive and semi-exclusive branching ratios of the tau lepton hadronic decay modes (h- v_t, h- pi0 v_t, h- pi0 pi0 v_t, h- \geq 2pi0 v_t, h- \geq 3pi0 v_t, 2h- h+ v_t, 2h- h+ pi0 v_t, 2h- h+ \geq 2pi0 v_t, 3h- 2h+ v_t and 3h- 2h+ \geq 1pi0 v_t) were measured with data from the DELPHI detector at LEP.Comment: 53 pages, 18 figures, Accepted by Eur. Phys. J.

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    A New Malaria Agent in African Hominids

    Get PDF
    Plasmodium falciparum is the major human malaria agent responsible for 200 to 300 million infections and one to three million deaths annually, mainly among African infants. The origin and evolution of this pathogen within the human lineage is still unresolved. A single species, P. reichenowi, which infects chimpanzees, is known to be a close sister lineage of P. falciparum. Here we report the discovery of a new Plasmodium species infecting Hominids. This new species has been isolated in two chimpanzees (Pan troglodytes) kept as pets by villagers in Gabon (Africa). Analysis of its complete mitochondrial genome (5529 nucleotides including Cyt b, Cox I and Cox III genes) reveals an older divergence of this lineage from the clade that includes P. falciparum and P. reichenowi (∼21±9 Myrs ago using Bayesian methods and considering that the divergence between P. falciparum and P. reichenowi occurred 4 to 7 million years ago as generally considered in the literature). This time frame would be congruent with the radiation of hominoids, suggesting that this Plasmodium lineage might have been present in early hominoids and that they may both have experienced a simultaneous diversification. Investigation of the nuclear genome of this new species will further the understanding of the genetic adaptations of P. falciparum to humans. The risk of transfer and emergence of this new species in humans must be now seriously considered given that it was found in two chimpanzees living in contact with humans and its close relatedness to the most virulent agent of malaria
    • …
    corecore