327 research outputs found

    Electrical and non electrical characteristics for the fast detection of high current free-burning arcs

    Get PDF
    To guarantee save and reliable operation of low voltage grid devices and to protect all devices from disturbance or damage, it is absolutely necessary to separate normal operation from fault state. A typical fault state with an enormous hazard potential is the arc fault. Due to the high level of energy involved, it can lead to the total write-off of affected devices and hence interrupt the energy supply (service). To prevent extensive consequences, there is a high demand to detect these error conditions and to terminate the fault state in a period of a few milliseconds. The analysis of typical electrical and non-electrical signals with numerical algorithms enables fast detection of arc faults

    Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    Get PDF
    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of \sim7.4\% for H^- at a beam energy of 10\,keV and \sim3.7\% for C^- at 28\,keV. The diode laser systems used here operate at 975\,nm and 808\,nm, respectively, and provide high continuous power levels of up to 2\,kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table

    Isotope effect for associative detachment: H(D)−+H(D)→H2(D2)+e

    Get PDF
    We report experimental and theoretical results for associative detachment (AD) of D−+D→D2+e−. We compare these data to our previously published results for H−+H→H2+e−. The measurements show no significant isotope effect in the total cross section. This is to be contrasted with previously published experimental and theoretical work which has found a significant isotope effect in diatomic systems for partial AD cross sections, i.e., as a function of the rotational and vibrational levels of the final molecule formed. Our work implies that though the rovibrational distribution of flux is different for AD of H− + H and D− + D, the total flux for these two systems is essentially the same when summed over all possible final channels

    The Solution Structures of Two Human IgG1 Antibodies Show Conformational Stability and Accommodate Their C1q and FcγR Ligands.

    Get PDF
    The human IgG1 antibody subclass shows distinct properties compared with the IgG2, IgG3, and IgG4 subclasses and is the most exploited subclass in therapeutic antibodies. It is the most abundant subclass, has a half-life as long as that of IgG2 and IgG4, binds the FcγR receptor, and activates complement. There is limited structural information on full-length human IgG1 because of the challenges of crystallization. To rectify this, we have studied the solution structures of two human IgG1 6a and 19a monoclonal antibodies in different buffers at different temperatures. Analytical ultracentrifugation showed that both antibodies were predominantly monomeric, with sedimentation coefficients s20,w (0) of 6.3-6.4 S. Only a minor dimer peak was observed, and the amount was not dependent on buffer conditions. Solution scattering showed that the x-ray radius of gyration Rg increased with salt concentration, whereas the neutron Rg values remained unchanged with temperature. The x-ray and neutron distance distribution curves P(r) revealed two peaks, M1 and M2, whose positions were unchanged in different buffers to indicate conformational stability. Constrained atomistic scattering modeling revealed predominantly asymmetric solution structures for both antibodies with extended hinge structures. Both structures were similar to the only known crystal structure of full-length human IgG1. The Fab conformations in both structures were suitably positioned to permit the Fc region to bind readily to its FcγR and C1q ligands without steric clashes, unlike human IgG4. Our molecular models for human IgG1 explain its immune activities, and we discuss its stability and function for therapeutic applications

    A dose-finding Phase 2 study of single agent isatuximab (anti-CD38 mAb) in relapsed/refractory multiple myeloma

    Get PDF
    A Phase 2 dose-finding study evaluated isatuximab, an anti-CD38 monoclonal antibody, in relapsed/refractory multiple myeloma (RRMM; NCT01084252). Patients with ?3 prior lines or refractory to both immunomodulatory drugs and proteasome inhibitors (dual refractory) were randomized to isatuximab 3 mg/kg every 2 weeks (Q2W), 10 mg/kg Q2W(2 cycles)/Q4W, or 10 mg/kg Q2W. A fourth arm evaluated 20 mg/kg QW(1 cycle)/Q2W. Patients (N = 97) had a median (range) age of 62 years (38-85), 5 (2-14) prior therapy lines, and 85% were double refractory. The overall response rate (ORR) was 4.3, 20.0, 29.2, and 24.0% with isatuximab 3 mg/kg Q2W, 10 mg/kg Q2W/Q4W, 10 mg/kg Q2W, and 20 mg/kg QW/Q2W, respectively. At doses ?10 mg/kg, median progression-free survival and overall survival were 4.6 and 18.7 months, respectively, and the ORR was 40.9% (9/22) in patients with high-risk cytogenetics. CD38 receptor density was similar in responders and non-responders. The most common non-hematologic adverse events (typically grade ?2) were nausea (34.0%), fatigue (32.0%), and upper respiratory tract infections (28.9%). Infusion reactions (typically with first infusion and grade ?2) occurred in 51.5% of patients. In conclusion, isatuximab is active and generally well tolerated in heavily pretreated RRMM, with greatest efficacy at doses ?10 mg/kg

    FcγRIIb Inhibits Allergic Lung Inflammation in a Murine Model of Allergic Asthma

    Get PDF
    Allergic asthma is characterized by airway eosinophilia, increased mucin production and allergen-specific IgE. Fc gamma receptor IIb (FcγRIIb), an inhibitory IgG receptor, has recently emerged as a negative regulator of allergic diseases like anaphylaxis and allergic rhinitis. However, no studies to date have evaluated its role in allergic asthma. Our main objective was to study the role of FcγRIIb in allergic lung inflammation. We used a murine model of allergic airway inflammation. Inflammation was quantified by BAL inflammatory cells and airway mucin production. FcγRIIb expression was measured by qPCR and flow cytometry and the cytokines were quantified by ELISA. Compared to wild type animals, FcγRIIb deficient mice mount a vigorous allergic lung inflammation characterized by increased bronchoalveolar lavage fluid cellularity, eosinophilia and mucin content upon ragweed extract (RWE) challenge. RWE challenge in sensitized mice upregulated FcγRIIb in the lungs. Disruption of IFN-γ gene abrogated this upregulation. Treatment of naïve mice with the Th1-inducing agent CpG DNA increased FcγRIIb expression in the lungs. Furthermore, treatment of sensitized mice with CpG DNA prior to RWE challenge induced greater upregulation of FcγRIIb than RWE challenge alone. These observations indicated that RWE challenge upregulated FcγRIIb in the lungs by IFN-γ- and Th1-dependent mechanisms. RWE challenge upregulated FcγRIIb on pulmonary CD14+/MHC II+ mononuclear cells and CD11c+ cells. FcγRIIb deficient mice also exhibited an exaggerated RWE-specific IgE response upon sensitization when compared to wild type mice. We propose that FcγRIIb physiologically regulates allergic airway inflammation by two mechanisms: 1) allergen challenge mediates upregulation of FcγRIIb on pulmonary CD14+/MHC II+ mononuclear cells and CD11c+ cells by an IFN-γ dependent mechanism; and 2) by attenuating the allergen specific IgE response during sensitization. Thus, stimulating FcγRIIb may be a therapeutic strategy in allergic airway disorders

    Polymeric human Fc-fusion proteins with modified effector functions

    Get PDF
    The success of Fc-fusion bio-therapeutics has spurred the development of other Fc-fusion products for treating and/or vaccinating against a range of diseases. We describe a method to modulate their function by converting them into well-defined stable polymers. This strategy resulted in cylindrical hexameric structures revealed by tapping mode atomic force microscopy (AFM). Polymeric Fc-fusions were significantly less immunogenic than their dimeric or monomeric counterparts, a result partly owing to their reduced ability to interact with critical Fc-receptors. However, in the absence of the fusion partner, polymeric IgG1-Fc molecules were capable of binding selectively to FcγRs, with significantly increased affinity owing to their increased valency, suggesting that these reagents may prove of immediate utility in the development of well-defined replacements for intravenous immunoglobulin (IVIG) therapy. Overall, these findings establish an effective IgG Fc-fusion based polymeric platform with which the therapeutic and vaccination applications of Fc-fusion immune-complexes can now be explored

    Neutralization of (NK-cell-derived) B-cell activating factor by Belimumab restores sensitivity of chronic lymphoid leukemia cells to direct and Rituximab-induced NK lysis.

    Get PDF
    Natural killer (NK) cells are cytotoxic lymphocytes that substantially contribute to the therapeutic benefit of antitumor antibodies like Rituximab, a crucial component in the treatment of B-cell malignancies. In chronic lymphocytic leukemia (CLL), the ability of NK cells to lyse the malignant cells and to mediate antibody-dependent cellular cytotoxicity upon Fc receptor stimulation is compromised, but the underlying mechanisms are largely unclear. We report here that NK-cells activation-dependently produce the tumor necrosis factor family member 'B-cell activating factor' (BAFF) in soluble form with no detectable surface expression, also in response to Fc receptor triggering by therapeutic CD20-antibodies. BAFF in turn enhanced the metabolic activity of primary CLL cells and impaired direct and Rituximab-induced lysis of CLL cells without affecting NK reactivity per se. The neutralizing BAFF antibody Belimumab, which is approved for treatment of systemic lupus erythematosus, prevented the effects of BAFF on the metabolism of CLL cells and restored their susceptibility to direct and Rituximab-induced NK-cell killing in allogeneic and autologous experimental systems. Our findings unravel the involvement of BAFF in the resistance of CLL cells to NK-cell antitumor immunity and Rituximab treatment and point to a benefit of combinatory approaches employing BAFF-neutralizing drugs in B-cell malignancies

    Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential

    Get PDF
    Human IgG3 displays the strongest effector functions of all IgG subclasses but has a short half-life for unresolved reasons. Here we show that IgG3 binds to IgG-salvage receptor (FcRn), but that FcRn-mediated transport and rescue of IgG3 is inhibited in the presence of IgG1 due to intracellular competition between IgG1 and IgG3. We reveal that this occurs because of a single amino acid difference at position 435, where IgG3 has an arginine instead of the histidine found in all other IgG subclasses. While the presence of R435 in IgG increases binding to FcRn at neutral pH, it decreases binding at acidic pH, affecting the rescue efficiency—but only in the presence of H435–IgG. Importantly, we show that in humans the half-life of the H435-containing IgG3 allotype is comparable to IgG1. H435–IgG3 also gave enhanced protection against a pneumococcal challenge in mice, demonstrating H435–IgG3 to be a candidate for monoclonal antibody therapies
    corecore