10 research outputs found

    Non-motor symptoms in Dystonia: From diagnosis to treatment

    Get PDF
    The Dystonia Medical Research Foundation organized an expert virtual workshop in March 2023 to review the evidence on non-motor symptoms across the spectrum of dystonia, discuss existing assessment methods, need for their harmonisation and roadmap to achieve this, and evaluate potential treatment approaches. Albeit the most investigated non-motor domains, experts highlighted the need to identify the most accurate screening procedure for depression and anxiety, clarify their mechanistic origin and quantify their response to already available therapies. Future exploration of sleep disruption in dystonia should include determining the accuracy and feasibility of wearable devices, understanding the contribution of psychotropic medication to its occurrence, and defining the interaction between maladaptive plasticity and abnormal sleep patterns. Despite recent advances in the assessment of pain in dystonia, more research is needed to elucidate the relative importance of different mechanisms called into play to explain this impactful sensory feature and the most appropriate treatments. Amongst the different non-motor features investigated in dystonia, cognitive dysfunction and fatigue require an in-depth observation to evaluate their functional impact, their clinical profile and assessment methods and, in the case of cognition, whether impairment represents a prodrome of dementia. Finally, experts identified the development and field validation of a self-rated screening tool encompassing the full spectrum of non-motor symptoms as the most urgent step towards incorporating the management of these features into routine clinical practice

    Prominent psychiatric comorbidity in the dominantly inherited movement disorder myoclonus-dystonia.

    No full text
    BACKGROUND: Neurological and psychiatric disorders show clinical overlap suggesting a shared pathophysiological background. We evaluated myoclonus-dystonia, a monogenic movement disorder as a disease model for inherited psychopathology. METHOD: We investigated 12 SGCE mutation carriers using standardized neurological and psychiatric examinations to assign DSM-IV diagnoses. Furthermore, we analyzed all studies in the Medline database which included psychiatric information on SGCE mutation-positive patients. RESULTS: Of our twelve SGCE mutation carriers, 10 were older than 16 years. Two of them (20%) reported psychiatric diagnoses before our examination, which resulted in at least one psychiatric diagnosis in seven (70%) patients, most frequently anxiety (60%), depression (30%) or both. Substance abuse was observed in 20%, whereas obsessive-compulsive disorders were absent. One mutation carrier showed Axis 2 features. In the literature analysis, the ten studies using standardized tools covering DSM-IV criteria reported prevalences similar to those in our sample. This was three times the frequency of psychiatric disorders detected in 13 studies using clinical history or patient report only. CONCLUSION: About two thirds of SGCE mutation carriers develop psychiatric comorbidity and >80% are previously undiagnosed

    Mortalin mutations are not a frequent cause of early-onset Parkinson disease.

    No full text
    Dysfunctional mitochondria and the mitochondrial chaperone mortalin (HSPA9, GRP75) have been implicated in the pathogenesis of Parkinson disease (PD). We screened 139 early-onset PD (EOPD) patients for mutations in mortalin revealing one missense change (p.L358P) that was absent in 279 control individuals. We also found one additional missense variant among the controls (p.T333K). Although both missense changes were predicted to be disease causing, we detected no differences in subcellular localization, mitochondrial morphology, or respiratory function between wild-type and mutant mortalin. These findings suggest that variants in mortalin (1) are not a major cause of EOPD; (2) occur in patients and controls; and (3) do not lead to functional impairment of mitochondria

    Motivational tuning of fronto-subthalamic connectivity facilitates control of action impulses

    No full text
    It is critical for survival to quickly respond to environmental stimuli with the most appropriate action. This task becomes most challenging when response tendencies induced by relevant and irrelevant stimulus features are in conflict, and have to be resolved in real time. Inputs from the pre-supplementary motor area (pre-SMA) and inferior frontal gyrus (IFG) to the subthalamic nucleus (STN) are thought to support this function, but the connectivity and causality of these regions in calibrating motor control has not been delineated. In this study, we combined off-line noninvasive brain stimulation and functional magnetic resonance imaging, while young healthy human participants performed a modified version of the Simon task. We show that impairing pre-SMA function by noninvasive brain stimulation improved control over impulsive response tendencies, but only when participants were explicitly rewarded for fast and accurate responses. These effects were mediated by enhanced activation and connectivity of the IFG–STN pathway. These results provide causal evidence for a pivotal role of the IFG–STN pathway during action control. Additionally, they suggest a parallel rather than hierarchical organization of the pre-SMA–STN and IFG–STN pathways, since interruption of pre-SMA function can enhance IFG–STN connectivity and improve control over inappropriate responses.</jats:p

    MDR1 variants and risk of Parkinson disease

    No full text
    The multidrug resistance protein 1 (MDR1 or ABCB1) gene encodes a P-glycoprotein that protects the brain against neurotoxicants. Certain MDR1 genetic variants are known to compromise the function of this transporter and may thus be associated with Parkinson disease (PD). We therefore conducted a large case-control study investigating the potential relationship between MDR1 variants and PD. We determined the frequency of three MDR1 variants in 599 European PD patients and controls and further stratified the population by ethnicity, age at onset, and exposure to pesticides. We detected no relevant association in either the entire sample, or when separately investigating by ethnic origin or age at onset. However, the distribution of c.3435C/T differed significantly between PD patients exposed to pesticides compared to those non-exposed (odds ratio = 4.74; confidence interval = [1.009; 22.306]); p = 0.047), suggesting that common MDR1 variants might influence the risk to develop PD in conjunction with exposure to pesticides

    Hematopoietic stem cell transplantation for adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first remission: a position statement of the European Working Group for Adult Acute Lymphoblastic Leukemia (EWALL) and the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT).

    Full text link
    Allogeneic hematopoietic stem cell transplantation (HSCT) in first complete remission is a standard of care for adult patients with Philadelphia chromosome (Ph)-negative acute lymphoblastic leukemia (ALL) and high risk of relapse. However, the stratification systems vary among study groups. Inadequate response at the level of minimal residual disease is the most commonly accepted factor indicating the need for alloHSCT. In this consensus paper on behalf of the European Working Group for Adult Acute Lymphoblastic Leukemia and the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation, we summarize available evidence and reflect current clinical practice in major European study groups regarding both indications for HSCT and particular aspects of the procedure including the choice of donor, source of stem cells and conditioning. Finally, we propose recommendations for daily clinical practice as well as for planning of prospective trials

    Literatur

    No full text

    Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders

    Get PDF
    Importance Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood. Objective To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia. Design, Setting, and Participants Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244. Main Outcomes and Measures Interregional profiles of group difference in cortical thickness between cases and controls. Results A total of 12 721 cases and 15 600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (except for OCD); collectively, gene-expression profiles of the 3 cell types explain between 25% and 54% of variance in interregional profiles of group differences in cortical thickness. Principal component analysis revealed a shared profile of difference in cortical thickness across the 6 disorders (48% variance explained); interregional profile of this principal component 1 was associated with that of the pyramidal-cell gene expression (explaining 56% of interregional variation). Coexpression analyses of these genes revealed 2 clusters: (1) a prenatal cluster enriched with genes involved in neurodevelopmental (axon guidance) processes and (2) a postnatal cluster enriched with genes involved in synaptic activity and plasticity-related processes. These clusters were enriched with genes associated with all 6 psychiatric disorders. Conclusions and Relevance In this study, shared neurobiologic processes were associated with differences in cortical thickness across multiple psychiatric disorders. These processes implicate a common role of prenatal development and postnatal functioning of the cerebral cortex in these disorders
    corecore