11 research outputs found

    Author Correction: Floating macrolitter leaked from Europe into the ocean (Nature Sustainability, (2021), 4, 6, (474-483), 10.1038/s41893-021-00722-6)

    Get PDF
    During the preparation of the Supplementary Data spreadsheet “S. Data 3_Regression data,” the mean and median confidence intervals (CI) of FML (items yr−1) were misplaced in relation to their corresponding river names. The Supplementary Data file has now been updated in the HTML version of the article. This update does not alter the results or conclusions of this article.Correction to: Nature Sustainability https://doi.org/10.1038/s41893-021-00722-6, published online 10 June 2021. During the preparation of the Supplementary Data spreadsheet “S. Data 3_Regression data,” the mean and median confidence intervals (CI) of FML (items yr−1) were misplaced in relation to their corresponding river names. The Supplementary Data file has now been updated in the HTML version of the article. This update does not alter the results or conclusions of this article.Peer reviewe

    Floating macro litter in European rivers - top items

    Get PDF
    The JRC exploratory project RIMMEL provides information about litter, mainly plastic waste, entering the European Seas through river systems. RIMMEL has collected data on riverine floating macro litter inputs to the sea. Data acquisition was based on the Riverine Litter Observation Network (RiLON) activities, which collected data from rivers in the European marine basins over a period of one year (September 2016 – September 2017). Data was collected by visual observations and documented with the JRC Floating Litter Monitoring Application for mobile devices, allowing a harmonized reporting, compatible with the MSFD Master List of Categories for Litter Items. This report includes the Top Items lists of riverine floating macro litter, based on the total amount of litter items identified during RiLON activities and ranked by abundance. Top Items lists have been elaborated considering the whole database for the European Seas and further detailed for each individual European regional sea: Baltic Sea, Black Sea, Mediterranean Sea and North-East Atlantic. The North-East Atlantic and the Mediterranean Sea regions showed similar litter categories in their Top 20 Items. These two regions provided most of the available data, influencing the general Top Items list. In the Black Sea and Baltic Sea regions, where data availability was limited, the Top Items lists showed more differences among the different regions. Overall, the general Top Items list for the European Seas showed a predominance of plastic item categories (artificial polymer materials). As a whole, plastic items made up to 80.8% of all objects, with plastic and polystyrene fragments comprising 45% of the identified items in the database. Additionally, Single Use Plastics such as bottles, cover/packaging and bags were also ranked among the most frequently found floating litter. The similarities in the Top 10 and Top 20 items for the different regions, and the appearance of Single Use Plastics scoring high in the ranking, support the need for common actions against plastic pollution at EU level.JRC.D.2-Water and Marine Resource

    Monitoring Litter Inputs from the Adour River (Southwest France) to the Marine Environment

    No full text
    Rivers are major pathways for litter to enter the ocean, especially plastic debris. Yet, further research is needed to improve knowledge on rivers contribution, increase data availability, refine litter origins, and develop relevant solutions to limit riverine litter inputs. This study presents the results of three years of aquatic litter monitoring on the Adour river catchment (southwest of France). Litter monitoring consisted of collecting all litter stranded on river banks or stuck in the riparian vegetation in defined areas identified from cartographic and hydromorphological analyses, and with the support of local stakeholders. Litter samples were then sorted and counted according to a list of items containing 130 categories. Since 2014, 278 litter samplings were carried out, and 120,632 litter items were collected, sorted, and counted. 41% of litter could not be identified due to high degradation. Food and beverage packaging, smoking-related items, sewage related debris, fishery and mariculture gear, and common household items represented around 70% of identifiable items. Overall, the present study contributes to our knowledge of litter sources and pathways, with the target of reducing the amounts entering the ocean. The long-term application of this monitoring is a way forward to measure societal changes as well as assess effectiveness of measures

    A first estimation of uncertainties related to microplastic sampling in rivers

    No full text
    International audienceMany studies have been conducted to quantify microplastic contamination, but only a few of them have actually the sampling methodology and associated uncertainties. This study seeks to examine the influence of sampling strategy on the confidence interval of river microplastic estimates. 16 samples are collected in the Gave de Pau River (southwestern France) during a three-hour window with a 330-μm mesh size net. Three different exposure times (3, 5 and 7 min) allow for a respective filtration rate by the net of 35.6 m3 (3 samples), 59.4 m3 (10 samples), and 83.2 m3 (3 samples) of water. Organic matter contained in samples is removed by hydrogen peroxide oxidation. The plastic particles are then counted and classified under a binocular microscope. The microplastic concentrations vary between 2.64 and 4.24 microplastics/m3, with a median value of 3.26 microplastics/m3. Statistical analysis does not show differences in microplastic concentrations for the three exposure times. This result seems to demonstrate that a filtration of approx. 35 m3 of water is sufficient under similar conditions (similar flow condition and degree of microplastic contamination) and can help reduce sampling and sample processing time. Other analyses, based on 10 filtrations of 59.4 m3, show that the higher the number of samples, the lower the confidence interval. For triplicates, the mean confidence interval reaches 15% of the median value. Thus, collecting triplicates would seem to offer a reasonable optimum, in combining an acceptable error percentage and time efficiency. These results might depend on the microplastic load of the river, therefore making it necessary to conduct similar analyses on other rivers. This study reports for the first time uncertainties related to microplastic sampling in rivers. Such findings will serve to set up long term monitoring, highlight spatial differences between sites and improve the accuracy of annual microplastic fluxes in rivers

    Une première estimation des incertitudes liées à l'échantillonnage de microplastiques en rivière

    No full text
    International audienceMany studies have been conducted to quantify microplastic contamination, but only a few of them have actually the sampling methodology and associated uncertainties. This study seeks to examine the influence of sampling strategy on the confidence interval of river microplastic estimates. 16 samples are collected in the Gave de Pau River (southwestern France) during a three-hour window with a 330-μm mesh size net. Three different exposure times (3, 5 and 7 min) allow for a respective filtration rate by the net of 35.6 m3 (3 samples), 59.4 m3 (10 samples), and 83.2 m3 (3 samples) of water. Organic matter contained in samples is removed by hydrogen peroxide oxidation. The plastic particles are then counted and classified under a binocular microscope. The microplastic concentrations vary between 2.64 and 4.24 microplastics/m3, with a median value of 3.26 microplastics/m3. Statistical analysis does not show differences in microplastic concentrations for the three exposure times. This result seems to demonstrate that a filtration of approx. 35 m3 of water is sufficient under similar conditions (similar flow condition and degree of microplastic contamination) and can help reduce sampling and sample processing time. Other analyses, based on 10 filtrations of 59.4 m3, show that the higher the number of samples, the lower the confidence interval. For triplicates, the mean confidence interval reaches 15% of the median value. Thus, collecting triplicates would seem to offer a reasonable optimum, in combining an acceptable error percentage and time efficiency. These results might depend on the microplastic load of the river, therefore making it necessary to conduct similar analyses on other rivers. This study reports for the first time uncertainties related to microplastic sampling in rivers. Such findings will serve to set up long term monitoring, highlight spatial differences between sites and improve the accuracy of annual microplastic fluxes in rivers

    Multi-modal data fusion for Cardiac Resynchronization Therapy planning and assistance

    No full text
    International audienceCardiac Resynchronization Therapy (CRT) has been validated as an efficient treatment for selected patients suffering from heart failure with cardiac dyssynchrony. In case of bi-ventricular stimulation, the response to the therapy may be improved by an optimal choice of the left ventricle (LV) pacing sites. The characterization of LV properties to select the best candidate sites and to precise their access modes would be useful for the clinician in pre- and per-operative stages. For that purpose, we propose a new pre-operative analysis solution integrating previously developed multi-modal data registration methods and a new segmentation process of their coronary venous access. Moreover, a novel visualization interface is proposed to help the clinician to visualize the most relevant pacing sites and their access during the implantation in the operating room. This work is illustrated on real CRT data patient

    Floating macrolitter leaked from Europe into the ocean

    No full text
    International audienceRiverine systems act as converging pathways for discarded litter within drainage basins, becoming key elements in gauging the transfer of mismanaged waste into the ocean. However, riverine litter data are scarce and biased towards microplastics, generally lacking information about larger items. Based on the first ever database of riverine floating macrolitter across Europe, we have estimated that between 307 and 925 million litter items are released annually from Europe into the ocean. The plastic fraction represented 82% of the observed litter, mainly fragments and single-use items (that is, bottles, packaging and bags). Our modelled estimates show that a major portion of the total litter loading is routed through small-sized drainage basins (<100 km2), indicating the relevance of small rivers, streams and coastal run-off. Moreover, the major contribution of high-income countries to the macrolitter inputs suggests that reducing ocean pollution cannot be achieved only by improving waste management, but also requires changing consumption habits and behaviour to curb waste generation at source. The inability of countries with well-developed recovery systems to control the leakage of waste into the environment further supports the need to regulate the production and use of plastic on a global scale
    corecore