65 research outputs found

    Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters

    Get PDF
    The widely reported paradox of methane oversaturation in oxygenated water challenges the prevailing paradigm that microbial methanogenesis only occurs under anoxic conditions. Using a combination of field sampling, incubation experiments, and modeling, we show that the recurring mid-water methane peak in Lake Stechlin, northeast Germany, was not dependent on methane input from the littoral zone or bottom sediment or on the presence of known micro-anoxic zones. The methane peak repeatedly overlapped with oxygen oversaturation in the seasonal thermocline. Incubation experiments and isotope analysis indicated active methane production, which was likely linked to photosynthesis and/or nitrogen fixation within the oxygenated water, whereas lessening of methane oxidation by light allowed accumulation of methane in the oxygen-rich upper layer. Estimated methane efflux from the surface water was up to 5 mmol m(-2) d(-1). Mid-water methane oversaturation was also observed in nine other lakes that collectively showed a strongly negative gradient of methane concentration within 0-20% dissolved oxygen (DO) in the bottom water, and a positive gradient within \u3e= 20% DO in the upper water column. Further investigation into the responsible organisms and biochemical pathways will help improve our understanding of the global methane cycle

    High spatiotemporal variability of methane concentrations challenges estimates of emissions across vegetated coastal ecosystems

    Get PDF
    Coastal methane (CH4) emissions dominate the global ocean CH4 budget and can offset the "blue carbon" storage capacity of vegetated coastal ecosystems. However, current estimates lack systematic, high-resolution, and long-term data from these intrinsically heterogeneous environments, making coastal budgets sensitive to statistical assumptions and uncertainties. Using continuous CH4 concentrations, delta C-13-CH4 values, and CH4 sea-air fluxes across four seasons in three globally pervasive coastal habitats, we show that the CH4 distribution is spatially patchy over meter-scales and highly variable in time. Areas with mixed vegetation, macroalgae, and their surrounding sediments exhibited a spatiotemporal variability of surface water CH4 concentrations ranging two orders of magnitude (i.e., 6-460 nM CH4) with habitat-specific seasonal and diurnal patterns. We observed (1) delta C-13-CH signatures that revealed habitat-specific CH4 production and consumption pathways, (2) daily peak concentration events that could change >100% within hours across all habitats, and (3) a high thermal sensitivity of the CH4 distribution signified by apparent activation energies of similar to 1 eV that drove seasonal changes. Bootstrapping simulations show that scaling the CH4 distribution from few samples involves large errors, and that similar to 50 concentration samples per day are needed to resolve the scale and drivers of the natural variability and improve the certainty of flux calculations by up to 70%. Finally, we identify northern temperate coastal habitats with mixed vegetation and macroalgae as understudied but seasonally relevant atmospheric CH4 sources (i.e., releasing >= 100 mu mol CH4 m(-2) day(-1) in summer). Due to the large spatial and temporal heterogeneity of coastal environments, high-resolution measurements will improve the reliability of CH4 estimates and confine the habitat-specific contribution to regional and global CH4 budgets.Peer reviewe

    Vertical shifts in the microbial community structure of organic-rich Namibian shelf sediments

    No full text
    This study investigates the diversity and abundance of bacteria in organic-rich Namibian shelf sediments from two sampling stations, using the 16S rRNA library approach and Catalyzed Reporter Deposition Fluorescent in situ Hybridization (CARD-FISH). Six clone libraries were constructed. Clone libraries were dominated by Delta-proteobacteria (up to 48%) and Gamma-proteobacteria (up to 98%). Bacteroidetes were dominant in the clone library of the top 6 cm (up to 17%), while actinobacteria dominated at a depth of 10 to 12 cm (up to 34%). Sequences that were related to bacteria with hydrolytic and fermenting abilities include members from the Gamma-proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria. Cloned sequences within the Delta-proteobacteria affiliates to sulfate reducing bacteria, including Desulfarculaceae, Desulfobacteraceae, Desulfobulbaceae, and Desulfuromonadales and were detected throughout the sediment. The two sampling stations differed in microbial diversity with a higher diversity prevailing at the station with higher metabolic rates for organic matter decomposition. At both sampling stations a shift in microbial community composition with depth was observed and is explained by gradients in organic substrate availability within the sediment, which affects the life strategies adopted by bacteria, resulting in niche diversification and ultimately affects bacterial community composition and structure throughout the sediment depth

    Temperature induced decoupling of enzymatic hydrolysis and carbon remineralization in long-term incubations of Arctic and temperate sediments

    No full text
    Extracellular enzymatic hydrolysis of high-molecular weight organic matter is the initial step in sedimentary organic carbon degradation and is often regarded as the rate-limiting step. Temperature effects on enzyme activities may therefore exert an indirect control on carbon mineralization. We explored the temperature sensitivity of enzymatic hydrolysis and its connection to subsequent steps in anoxic organic carbon degradation in long-term incubations of sediments from the Arctic and the North Sea. These sediments were incubated under anaerobic conditions for 24 months at temperatures of 0, 10, and 20 °C. The short-term temperature response of the active microbial community was tested in temperature gradient block incubations. The temperature optimum of extracellular enzymatic hydrolysis, as measured with a polysaccharide (chondroitin sulfate), differed between Arctic and temperate habitats by about 8–13 °C in fresh sediments and in sediments incubated for 24 months. In both Arctic and temperate sediments, the temperature response of chondroitin sulfate hydrolysis was initially similar to that of sulfate reduction. After 24 months, however, hydrolysis outpaced sulfate reduction rates, as demonstrated by increased concentrations of dissolved organic carbon (DOC) and total dissolved carbohydrates. This effect was stronger at higher incubation temperatures, particularly in the Arctic sediments. In all experiments, concentrations of volatile fatty acids (VFA) were low, indicating tight coupling between VFA production and consumption. Together, these data indicate that long-term incubation at elevated temperatures led to increased decoupling of hydrolytic DOC production relative to fermentation. Temperature increases in marine sedimentary environments may thus significantly affect the downstream carbon mineralization and lead to the increased formation of refractory DOC

    Microbial sequestration of phosphorus in anoxic upwelling sediments

    No full text
    Phosphorus is an essential nutrient for life. In the ocean, phosphorus burial regulates marine primary production1,2. Phosphorus is removed from the ocean by sedimentation of organic matter, and the subsequent conversion of organic phosphorus to phosphate minerals such as apatite, and ultimately phosphorite deposits3,4. Bacteria are thought to mediate these processes5, but the mechanism of sequestration has remained unclear. Here, we present results from laboratory incubations in which we labelled organic-rich sediments from the Benguela upwelling system, Namibia, with a 33P-radiotracer, and tracked the fate of the phosphorus. We show that under both anoxic and oxic conditions, large sulphide-oxidizing bacteria accumulate 33P in their cells, and catalyse the nearly instantaneous conversion of phosphate to apatite. Apatite formation was greatest under anoxic conditions. Nutrient analyses of Namibian upwelling waters and sediments suggest that the rate of phosphate-to-apatite conversion beneath anoxic bottom waters exceeds the rate of phosphorus release during organic matter mineralization in the upper sediment layers. We suggest that bacterial apatite formation is a significant phosphorus sink under anoxic bottom-water conditions. Expanding oxygen minimum zones are projected in simulations of future climate change6, potentially increasing sequestration of marine phosphate, and restricting marine productivity

    Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat

    No full text
    Insight into the effects of repeated freezing and thawing on microbial processes in sediments and soils is important for understanding sediment carbon cycling at high latitudes acutely affected by global warming. Microbial responses to repeated freeze-thaw conditions were studied in three complementary experiments using arctic sediment collected from an intertidal flat that is exposed to seasonal freeze-thaw conditions (Ymerbukta, Svalbard, Arctic Ocean). The sediment was subjected to oscillating freeze-thaw incubations, either gradual, from -5 to 4 degrees C, or abrupt, from -20 to 10 degrees C. Concentrations of low-molecular weight carboxylic acids (volatile fatty acids) were measured and sulfate reduction was assessed by measuring (35)S sulfate reduction rates (SRRs). Gradual freeze-thaw incubation decreased microbial activity in the frozen state to 0.25 % of initial levels at 4 degrees C, but activity resumed rapidly reaching >60 % of initial activity in the thawed state. Exposure of sediments to successive large temperature changes (-20 versus 10 degrees C) decreased SRR by 80% of the initial activity, suggesting that a fraction of the bacterial community recovered rapidly from extreme temperature fluctuations. This is supported by 16S rRNA gene-based denaturing gradient gel electrophoresis profiles that revealed persistence of the dominant microbial taxa under repeated freeze-thaw cycles. The fast recovery of the SRRs suggests that carbon mineralization in thawing arctic sediment can resume without delay or substantial growth of microbial populations
    • …
    corecore