136 research outputs found

    The Amino Terminus of the Yeast F_1-ATPase β-Subunit Precursor Functions as a Mitochondrial Import Signal

    Get PDF
    The ATP2 gene of Saccharomyces cerevisiae codes for the cytoplasmically synthesized beta-subunit protein of the mitochondrial F1-ATPase. To define the amino acid sequence determinants necessary for the in vivo targeting and import of this protein into mitochondria, we have constructed gene fusions between the ATP2 gene and either the Escherichia coli lacZ gene or the S. cerevisiae SUC2 gene (which codes for invertase). The ATP2-lacZ and ATP2-SUC2 gene fusions code for hybrid proteins that are efficiently targeted to yeast mitochondria in vivo. The mitochondrially associated hybrid proteins fractionate with the inner mitochondrial membrane and are resistant to proteinase digestion in the isolated organelle. Results obtained with the gene fusions and with targeting-defective ATP2 deletion mutants provide evidence that the amino-terminal 27 amino acids of the beta-subunit protein precursor are sufficient to direct both specific sorting of this protein to yeast mitochondria and its import into the organelle. Also, we have observed that certain of the mitochondrially associated Atp2-LacZ and Atp2-Suc2 hybrid proteins confer a novel respiration-defective phenotype to yeast cells

    Peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) restores carbapenem susceptibility to NDM-1-positive pathogens in vitro and in vivo

    Get PDF
    The objective of this study was to test the efficacy of an inhibitor of the New Delhi metallo-β- lactamase (NDM-1). Inhibiting expression of this type of antibiotic-resistance gene has the potential to restore antibiotic susceptibility in all bacteria carrying the gene.Methods: We have constructed a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) that selectively inhibits the expression of NDM-1 and examined its ability to restore susceptibility to meropenem in vitro and in vivo.Results:In vitro, the PPMO reduced the MIC of meropenem for three different genera of pathogens that express NDM-1. In a murine model of lethal E. coli sepsis, the PPMO improved survival (92%) and reduced systemic bacterial burden when given concomitantly with meropenem.Conclusions: These data show that a PPMO can restore antibiotic susceptibility in vitro and in vivo and that the combination of PPMO and meropenem may have therapeutic potential against certain class B carbapenem- resistant infections in multiple genera of Gram-negative pathogens

    A Novel Lactococcal Vaccine Expressing a Peptide from the M2 Antigen of H5N2 Highly Pathogenic Avian Influenza A Virus Prolongs Survival of Vaccinated Chickens

    Get PDF
    A cost-effective and efficacious influenza vaccine for use in commercial poultry farms would help protect against avian influenza outbreaks. Current influenza vaccines for poultry are expensive and subtype specific, and therefore there is an urgent need to develop a universal avian influenza vaccine. We have constructed a live bacterial vaccine against avian influenza by expressing a conserved peptide from the ectodomain of M2 antigen (M2e) on the surface of Lactococcus lactis (LL). Chickens were vaccinated intranasally with the lactococcal vaccine (LL-M2e) or subcutaneously with keyhole-limpet-hemocyanin conjugated M2e (KLHM2e). Vaccinated and nonvaccinated birds were challenged with high pathogenic avian influenza virus A subtype H5N2. Birds vaccinated with LL-M2e or KLH-M2e had median survival times of 5.5 and 6.0 days, respectively, which were significantly longer than non-vaccinated birds (3.5 days). Birds vaccinated subcutaneously with KLH-M2e had a lower mean viral burden than either of the other two groups. However, there was a significant correlation between the time of survival and M2e-specific serum IgG. The results of these trials show that birds in both vaccinated groups had significantly ( < 0.05) higher median survival times than non-vaccinated birds and that this protection could be due to M2e-specific serum IgG

    An Analysis of Private School Closings

    Get PDF
    We add to the small literature on private school supply by exploring exits of K-12 private schools. We find that the closure of private schools is not an infrequent event, and use national survey data from the National Center for Education Statistics to study closures of private schools. We assume that the probability of an exit is a function of excess supply of private schools over the demand, as well as the school's characteristics such as age, size, and religious affiliation. Our empirical results generally support the implications of the model. Working Paper 07-0

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
    corecore