633 research outputs found
Book Review: Euroscepticism within the EU institutions: diverging views of europe
Since its origins, there have been competing views concerning the nature, scope and objectives of the process of integration and of the European Union. Attitudes towards Europe and European integration, both among political elites and citizens, have been much studied over the last 15 years. But there is no comprehensive analysis of these competing views of Europe at the supranational level. Stuart A. Brown reviews Nathalie Brack and Olivier Costa’s edited collection on the divergence in views about the European Union, which lends insight into its consequences for the functioning of the EU and its institutions
Single-Particle Properties from Kohn-Sham Green's Functions
An effective action approach to Kohn-Sham density functional theory is used
to illustrate how the exact Green's function can be calculated in terms of the
Kohn-Sham Green's function. An example based on Skyrme energy functionals shows
that single-particle Kohn-Sham spectra can be improved by adding sources used
to construct the energy functional.Comment: 9 pages, 3 figure
Equilibration in the time-dependent Hartree-Fock approach probed with the Wigner distribution function
Calculating the Wigner distribution function in the reaction plane, we are
able to probe the phase-space behavior in time-dependent Hartree-Fock during a
heavy-ion collision. We compare the Wigner distribution function with the
smoothed Husimi distribution function. Observables are defined to give a
quantitative measure for local and global equilibration. We present different
reaction scenarios by analyzing central and non-central and
collisions. It is shown that the initial phase-space
volumes of the fragments barely merge. The mean values of the observables are
conserved in fusion reactions and indicate a "memory effect" in time-dependent
Hartree-Fock. We observe strong dissipation but no evidence for complete
equilibration.Comment: 12 pages, 10 figure
Solar system science with subarcsecond slit spectroscopy
During its first year of shared-risk observations, the PALAO/PHARO adaptive optics system has been employed to obtain near-infrared R approximately 1000 spectra of solar system targets at spectroscopic slit widths of 0.5 and 0.1 arcsec, and corresponding spatial resolution along the slit as fine as 0.08 arcsec. Phenomena undergoing initial investigation include condensate formation in the atmospheres of Neptune, and the Saturnian moon, Titan. We present the results of this AO spectroscopy campaign and discuss AO specific considerations in the reduction and interpretation of this data
Low-energy Pion-nucleon Scattering
This paper contains the results of an analysis of recent low-energy
pion-nucleon scattering experiments. Obtained are phase shifts, the
pion-nucleon coupling constant and an estimate of the Sigma term.Comment: 30 pages, 11 figures, LaTe
The role of nucleon structure in finite nuclei
The quark-meson coupling model, based on a mean field description of
non-overlapping nucleon bags bound by the self-consistent exchange of ,
and mesons, is extended to investigate the properties of finite
nuclei. Using the Born-Oppenheimer approximation to describe the interacting
quark-meson system, we derive the effective equation of motion for the nucleon,
as well as the self-consistent equations for the meson mean fields. The model
is first applied to nuclear matter, after which we show some initial results
for finite nuclei.Comment: The revised version. This is tar, compressed and uuencoded (including
3 tables and 8 figures). 45 page
Thermal stress induces glycolytic beige fat formation via a myogenic state.
Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fibre-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evoke developmental plasticity remain incompletely understood. Here we report a type of beige adipocyte that has a critical role in chronic cold adaptation in the absence of β-adrenergic receptor signalling. This beige fat is distinct from conventional beige fat with respect to developmental origin and regulation, and displays enhanced glucose oxidation. We therefore refer to it as glycolytic beige fat. Mechanistically, we identify GA-binding protein α as a regulator of glycolytic beige adipocyte differentiation through a myogenic intermediate. Our study reveals a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival
Symmetry Energy I: Semi-Infinite Matter
Energy for a nucleus is considered in macroscopic limit, in terms of nucleon
numbers. Further considered for a nuclear system is the Hohenberg-Kohn energy
functional, in terms of proton and neutron densities. Finally,
Skyrme-Hartree-Fock calculations are carried out for a half-infinite
particle-stable nuclear-matter. In each case, the attention is focused on the
role of neutron-proton asymmetry and on the nuclear symmetry energy. We extend
the considerations on the symmetry term from an energy formula to the
respective term in the Hohenberg-Kohn functional. We show, in particular, that
in the limit of an analytic functional, and subject to possible Coulomb
corrections, it is possible to construct isoscalar and isovector densities out
of the proton and neutron densities, that retain a universal relation to each
other, approximately independent of asymmetry. In the so-called local
approximation, the isovector density is inversely proportional to the symmetry
energy in uniform matter at the local isoscalar density. Generalized symmetry
coefficient of a nuclear system is related, in the analytic limit of a
functional, to an integral of the isovector density. We test the relations,
inferred from the Hohenberg-Kohn functional, in the Skyrme-Hartree-Fock
calculations of half-infinite matter. Within the calculations, we obtain
surface symmetry coefficients and parameters characterizing the densities, for
the majority of Skyrme parameterizations proposed in the literature. The
volume-to-surface symmetry-coefficient ratio and the displacement of nuclear
isovector relative to isoscalar surfaces both strongly increase as the slope of
symmetry energy in the vicinity of normal density increases.Comment: 87 pages, 18 figures; discussion of Kohn-Sham method added,
comparison to results in literature broadene
Solar system science with subarcsecond slit spectroscopy
During its first year of shared-risk observations, the PALAO/PHARO adaptive optics system has been employed to obtain near-infrared R approximately 1000 spectra of solar system targets at spectroscopic slit widths of 0.5 and 0.1 arcsec, and corresponding spatial resolution along the slit as fine as 0.08 arcsec. Phenomena undergoing initial investigation include condensate formation in the atmospheres of Neptune, and the Saturnian moon, Titan. We present the results of this AO spectroscopy campaign and discuss AO specific considerations in the reduction and interpretation of this data
- …