863 research outputs found
Torque vectoring to maximize straight-line efficiency in an all-electric vehicle with independent rear motor control
BEVs are a critical pathway towards achieving energy independence and meeting greenhouse and pollutant gas reduction goals in the current and future transportation sector [1]. Automotive manufacturers are increasingly investing in the refinement of electric vehicles as they are becoming an increasingly popular response to the global need for reduced transportation emissions. Therefore, there is a desire to extract the most fuel economy from a vehicle as possible. Some areas that manufacturers spend much effort on include minimizing the vehicle’s mass, body drag coefficient, and drag within the powertrain. When these values are defined or unchangeable, interest is driven to other areas such as investigating the control strategy of the powertrain. If two or more electric motors are present in an electric vehicle, Torque Vectoring (TV) strategies are an option to further increase the fuel economy of electric vehicles. Most of the torque vectoring strategies in literature focus exclusively on enhancing the vehicle stability and dynamics with few approaches that consider efficiency or energy consumption. The limited research on TV that addresses system efficiency have been done on a small number of vehicle architectures, such as four independent motors, and are distributing torque front/rear instead of left/right which would not induce any yaw moment. The proposed research aims to address these deficiencies in the current literature. First, by implementing an efficiency-optimized TV strategy for a rear-wheel drive, dual-motor vehicle under straight-line driving as would be experienced in during the EPA drive cycle tests. Second, by characterizing the yaw moment and implementing strategies to mitigate any undesired yaw motion. The application of the proposed research directly impacts dual-motor architectures in a way that improves overall efficiency which also drives an increase in fuel economy. Increased fuel economy increases the range of electric vehicles and reduces the energy demand from an electrical source that may be of non-renewable origin such as coal
Nighttime chemistry at a high altitude site above Hong Kong
Nighttime reactions of nitrogen oxides influence ozone, volatile organic compounds, and aerosol and are thus important to the understanding of regional air quality. Despite large emissions and rapid recent growth of nitrogen oxide concentrations, there are few studies of nighttime chemistry in China. Here we present measurements of nighttime nitrogen oxides, NO3 and N2O5, from a coastal mountaintop site in Hong Kong adjacent to the megacities of the Pearl River Delta region. This is the first study of nighttime chemistry from a site within the residual layer in China. Key findings include the following. First, highly concentrated urban NOx outflow from the Pearl River Delta region was sampled infrequently at night, with N2O5 mixing ratios up to 8 ppbv (1 min average) or 12 ppbv (1 s average) in nighttime aged air masses. Second, the average N2O5 uptake coefficient was determined from a best fit to the available steady state lifetime data as γ(N2O5) = 0.014 ± 0.007. Although this determination is uncertain due to the difficulty of separating N2O5 losses from those of NO3, this value is in the range of previous residual layer determinations of N2O5 uptake coefficients in polluted air in North America. Third, there was a significant contribution of biogenic hydrocarbons to NO3 loss inferred from canister samples taken during daytime. Finally, daytime N2O5 mixing ratios were in accord with their predicted photochemical steady state. Heterogeneous uptake of N2O5 in fog is determined to be an important production mechanism for soluble nitrate, even during daytime. Key Points Large (up to 12 ppbv N2O5) but infrequent nocturnal NOx outflow from the Pearl River Delta Average N2O5 uptake coefficients 0.014 ± 0.007, in line with residual layer measurements in the U.S. Daytime N2O5 follows predicted steady state but rapidly produces soluble nitrate in fog.Department of Civil and Environmental Engineerin
Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China
Nitryl chloride (ClNO2) plays potentially important roles in atmospheric chemistry, but its abundance and effect are not fully understood due to the small number of ambient observations of ClNO2 to date. In late autumn 2013, ClNO2 was measured with a chemical ionization mass spectrometer (CIMS) at a mountain top (957 m above sea level) in Hong Kong. During 12 nights with continuous CIMS data, elevated mixing ratios of ClNO2 (>400 parts per trillion by volume) or its precursor N2O5 (>1000 pptv) were observed on six nights, with the highest ever reported ClNO2 (4.7 ppbv, 1 min average) and N2O5 (7.7 ppbv, 1 min average) in one case. Backward particle dispersion calculations driven by winds simulated with a mesoscale meteorological model show that the ClNO2/N2O5-laden air at the high-elevation site was due to transport of urban/industrial pollution north of the site. The highest ClNO2/N2O5 case was observed in a later period of the night and was characterized with extensively processed air and with the presence of nonoceanic chloride. A chemical box model with detailed chlorine chemistry was used to assess the possible impact of the ClNO2 in the well-processed regional plume on next day ozone, as the air mass continued to downwind locations. The results show that the ClNO2 could enhance ozone by 5-16% at the ozone peak or 11-41% daytime ozone production in the following day. This study highlights varying importance of the ClNO2 chemistry in polluted environments and the need to consider this process in photochemical models for prediction of ground-level ozone and haze. Key Points First observation of ClNO2 in the planetary boundary layer of China Combined high-resolution meteorological and measurement-constrained chemical models in data analysis ClNO2 enhances daytime ozone peak by 5-16% in well-processed PRD air.Department of Civil and Environmental Engineerin
Recommended from our members
Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range
Abstract. Chemical models must correctly calculate the ozone formation rate, P(O3), to accurately predict ozone levels and to test mitigation strategies. However, air quality models can have large uncertainties in P(O3) calculations, which can create uncertainties in ozone forecasts, especially during the summertime when P(O3) is high. One way to test mechanisms is to compare modeled P(O3) to direct measurements. During summer 2014, the Measurement of Ozone Production Sensor (MOPS) directly measured net P(O3) in Golden, CO, approximately 25 km west of Denver along the Colorado Front Range. Net P(O3) was compared to rates calculated by a photochemical box model that was constrained by measurements of other chemical species and that used a lumped chemical mechanism and a more explicit one. Median observed P(O3) was up to a factor of 2 higher than that modeled during early morning hours when nitric oxide (NO) levels were high and was similar to modeled P(O3) for the rest of the day. While all interferences and offsets in this new method are not fully understood, simulations of these possible uncertainties cannot explain the observed P(O3) behavior. Modeled and measured P(O3) and peroxy radical (HO2 and RO2) discrepancies observed here are similar to those presented in prior studies. While a missing atmospheric organic peroxy radical source from volatile organic compounds co-emitted with NO could be one plausible solution to the P(O3) discrepancy, such a source has not been identified and does not fully explain the peroxy radical model–data mismatch. If the MOPS accurately depicts atmospheric P(O3), then these results would imply that P(O3) in Golden, CO, would be NOx-sensitive for more of the day than what is calculated by models, extending the NOx-sensitive P(O3) regime from the afternoon further into the morning. These results could affect ozone reduction strategies for the region surrounding Golden and possibly other areas that do not comply with national ozone regulations. Thus, it is important to continue the development of this direct ozone measurement technique to understand P(O3), especially under high-NOx regimes
Modelling Screwpile Installation Using the MPM
Screwpiles are, as the name suggests, piled foundations which are screwed into the ground. They provide restraint to both upwards and downward loading directions and are commonly used for light structures subject to overturning or wind loading, such as sign gantries at the sides of motorways. An EPSRC-funded project led by University of Dundee has recently started, with Durham and Southampton as partners, in which the use of screwpiles (individual or in groups) for offshore foundations is under investigation. At Durham, a numerical modelling framework based on the material point method (MPM) is being developed for the installation phase of a screwpile. The aim is to use the model to provide an accurate representation of the in situ ground conditions once the pile is installed, as during installation the ground is disturbed and any model that “wishes in place” a screwpile may not provide representative long-term performance predictions. Following modelling of installation, the soil state will be transferred to a standard finite element package for the subsequent modelling of in-service performance (the MPM being considered unnecessary and computationally expensive for this phase of the life of a screwpile). In this preliminary work, we present the development of features of this numerical tool to simulate the screwpile installation. These features include a moving mesh concept (both translation and rotation) and interface elements. The effectiveness of the algorithm is illustrated through simple examples
Measuring rural community resilience: case studies in New Zealand and Vermont, USA
To date, methods for assessing community resilience have focused predominantly on disaster recovery. Those that do focus on broader social-ecological and psychological contexts tend to be qualitative and have not been validated at the community scale. This situation reveals a need for quantitative measurement tools for assessing community resilience to slow-moving change such as rural depopulation or climate change. Our research provides a proof of concept across two diverse contexts, New Zealand and Vermont, USA, that community resilience can be quantified and broken down into dimensions of resilience. Using mixed methods, we assessed how eight communities across two countries perceive resilience and compared their perceptions with indicators of resilience in the form of official statistics. Vermonters generally perceived their communities as more resilient than did New Zealanders, and reported different dimensions of resilience as drivers of overall perceptions of resilience. Although institutional resilience was a driver of overall resilience in both countries, social and cultural dimensions of resilience were also drivers in New Zealand, whereas economic and environmental dimensions were drivers of overall resilience in Vermont. Resilience indicators were found to be weakly related or unrelated to community perceptions of resilience. This result suggests that the proposed method for measuring resilience can be used across contexts, but that there is not one type of resilience that is the key to higher levels of overall resilience. It also suggests that the two proxy measures of resilience, i.e., community perceptions and indicators, do not provide a consistent picture of resilience, raising the question of which is a more accurate measure
Physical modelling to demonstrate the feasibility of screw piles for offshore jacket supported wind energy structures
Screw piles potentially offer quieter installation and enhanced axial tensile capacity over straight shafted driven piles. As such, they have been suggested as a possible foundation solution for offshore jacket supported wind turbines in deeper water. To investigate the feasibility of their use in this setting, centrifuge testing of six model screw piles of different designs was conducted to measure the installation requirements and ultimate axial capacity of the piles in very-dense and medium-dense sand. The screw piles were designed to sustain loads generated by an extreme design scenario using published axial capacity and torque prediction formulae. Single and double-helix designs, including an optimised design, intended to minimise installation requirements, with reduced geometry were installed and tested in-flight. Piles in the medium-dense sand for example had significant installation requirements of up to 18.4MNm (torque) and 28.8MN (vertical force) which were accurately predicted using correlations with cone resistance data (CPT). Existing axial capacity design methods did not perform well for these large-scale screw piles, overestimating compressive and tensile capacities. Revised analytical methods for installation and axial capacity estimates are proposed here based on the centrifuge test results
Bridging cultural heritage and communities through digital technologies: Understanding perspectives and challenges
We present and discuss the results of a qualitative study aimed at
identifying what role interactive digital technologies could play in
facilitating the participation of communities at risk of exclusion
(particularly migrants and refugees) in cultural and heritage-related
activities. Culture and heritage are known to be key factors in fostering social inclusion, and this has the potential for contributing to
both the wellbeing of these communities and to cultural institutions
themselves. Through surveys and interviews with two cohorts of
participants (cultural heritage professionals and community facilitators), we gathered insights about their perspectives on how ICT
tools could support their work with and for communities, as well
as the challenges they face. This work sheds light on the opportunities and barriers surrounding the use of digital technologies for
participation in the cultural heritage sector, which is timely due
to the increasing focus on grassroots and community-led heritage
initiatives and to the growing body of work on participatory ICT
in disciplines such as human-computer interaction and community informatics
The Impact of Weapons and Unusual Objects on the Construction of Facial Composites
The presence of a weapon in the perpetration of a crime can impede an observer’s ability to describe and/or recognise the person responsible. In the current experiment, we explore whether weapons when present at encoding of a target identity interfere with construction of a facial composite. Participants encoded an unfamiliar target face seen either on its own or paired with a knife. Encoding duration (10 or 30 seconds) was also manipulated. The following day, participants recalled the face and constructed a composite of it using a holistic system (EvoFIT). Correct naming of the participants’ composites was found to reduce reliably when target faces were paired with the weapon at 10 seconds but not at 30 seconds. These data suggest that the presence of a weapon reduces the effectiveness of facial composites following short encoding duration. Implications for theory and police practice are discussed
The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data
We present constraints on cosmological and astrophysical parameters from
high-resolution microwave background maps at 148 GHz and 218 GHz made by the
Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to
2010. A model of primary cosmological and secondary foreground parameters is
fit to the map power spectra and lensing deflection power spectrum, including
contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the
kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy
from unresolved infrared sources, radio sources, and the correlation between
the tSZ effect and infrared sources. The power ell^2 C_ell/2pi of the thermal
SZ power spectrum at 148 GHz is measured to be 3.4 +\- 1.4 muK^2 at ell=3000,
while the corresponding amplitude of the kinematic SZ power spectrum has a 95%
confidence level upper limit of 8.6 muK^2. Combining ACT power spectra with the
WMAP 7-year temperature and polarization power spectra, we find excellent
consistency with the LCDM model. We constrain the number of effective
relativistic degrees of freedom in the early universe to be Neff=2.79 +\- 0.56,
in agreement with the canonical value of Neff=3.046 for three massless
neutrinos. We constrain the sum of the neutrino masses to be Sigma m_nu < 0.39
eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and
Hubble constant measurements. We constrain the amount of primordial helium to
be Yp = 0.225 +\- 0.034, and measure no variation in the fine structure
constant alpha since recombination, with alpha/alpha0 = 1.004 +/- 0.005. We
also find no evidence for any running of the scalar spectral index, dns/dlnk =
-0.004 +\- 0.012.Comment: 26 pages, 22 figures. This paper is a companion to Das et al. (2013)
and Dunkley et al. (2013). Matches published JCAP versio
- …