1,092 research outputs found
Synthesis of the oxysterol, 24(S), 25-epoxycholesterol, parallels cholesterol production and may protect against cellular accumulation of newly-synthesized cholesterol
AIM: The effects of 24(S),25-epoxycholesterol (24,25EC) on aspects of cholesterol homeostasis is well-documented. When added to cells, 24,25EC decreases cholesterol synthesis and up-regulates cholesterol efflux genes, including ABCA1. Synthesis of 24,25EC occurs in a shunt of the mevalonate pathway which also produces cholesterol. Therefore, 24,25EC synthesis should be subject to the same negative feedback regulation as cholesterol synthesis. To date, no role has been ascribed to 24,25EC in light of the fact that increased accumulation of cholesterol should decrease formation of this oxysterol through feedback inhibition. This leads to the intriguing paradox: why inhibit production of an apparently important regulator of cholesterol homeostasis when it is needed most? METHODS: We used a combination of pharmacological and genetic approaches in Chinese Hamster Ovary cell-lines to investigate this paradox. Endogenous synthesis of 24,25EC was manipulated using partial inhibition of the enzyme, Oxidosqualene Cyclase. Changes in cholesterol and 24,25EC synthesis were determined using metabolic labelling with [1-(14)C]-acetate, thin-layer chromatography and phosphorimaging. Transcriptional effects mediated via SREBP and LXR were analysed by luciferase reporter assays. RESULTS: We showed that cholesterol addition to cells lead to a rapid and preferential inhibition of 24,25EC synthesis. Addition of 24,25EC resulted in parallel inhibition of 24,25EC and cholesterol synthesis. Furthermore, we used a variety of approaches to examine the relationship between cholesterol and 24,25EC synthesis, including cell-lines with different rates of cholesterol synthesis, varying cholesterol synthetic rates by pre-treatment with a statin, or lipoprotein cholesterol loading of macrophages. In all cases, we showed that 24,25EC synthesis faithfully tracked cholesterol synthesis. Moreover, changes in 24,25EC synthesis exerted downstream effects, reducing SREBP transcriptional activity whilst increasing ABCA1 and LXR transcriptional activity. CONCLUSION: Our results show that 24,25EC synthesis parallels cholesterol synthesis, consistent with this oxysterol functioning as a safety valve to protect against the accumulation of newly-synthesised cholesterol (as opposed to exogenously-derived cholesterol). Considering that 24,25EC is capable of being produced in all cholesterogenic cells, we propose that production of 24,25EC may represent a ubiquitous defence mechanism
Revision workshops in elementary mathematics enhance student performance in routine laboratory calculations
The ability to understand and implement calculations required for molarity and dilution computations that are routinely undertaken in the laboratory are essential skills that should be possessed by all students entering an undergraduate Life Sciences degree. However, it is increasingly recognized that the majority of these students are ill equipped to reliably carry out such calculations. There are several factors that conspire against students' understanding of this topic, with the alien concept of the mole in relation to the mass of compounds and the engineering notation required when expressing the relatively small quantities typically involved being two key examples. In this report, we highlight teaching methods delivered via revision workshops to undergraduate Life Sciences students at the University of Nottingham. Workshops were designed to 1) expose student deficiencies in basic numeracy skills and remedy these deficiencies, 2) introduce molarity and dilution calculations and illustrate their workings in a step-by-step manner, and 3) allow students to appreciate the magnitude of numbers. Preworkshop to postworkshop comparisons demonstrated a considerable improvement in students' performance, which attenuated with time. The findings of our study suggest that an ability to carry out laboratory calculations cannot be assumed in students entering Life Sciences degrees in the United Kingdom but that explicit instruction in the form of workshops improves proficiency to a level of competence that allows students to prosper in the laboratory environment
Is Seladin-1 really a selective Alzheimer\u27s disease indicator?
Selective Alzheimer\u27s Disease Indicator-1 (Seladin-1) was originally identified by its down-regulation in the brains of Alzheimer\u27s disease (AD) patients. Here, we re-examine existing data and present new gene expression data that refutes its role as a selective AD indicator. Furthermore, we caution against the use of the name “Seladin-1” and instead recommend adoption of the approved nomenclature, 3β-hydroxysterol Δ24-reductase (or DHCR24), which describes its catalytic function in cholesterol synthesis. Further work is required to determine what link, if any, exists between DHCR24 and AD
Angular Dependence in Proton-Proton Correlation Functions in Central and Reactions
The angular dependence of proton-proton correlation functions is studied in
central and nuclear reactions at E=80
MeV/A. Measurements were performed with the HiRA detector complemented by the
4 Array at NSCL. A striking angular dependence in the laboratory frame is
found within p-p correlation functions for both systems that greatly exceeds
the measured and expected isospin dependent difference between the neutron-rich
and neutron-deficient systems. Sources measured at backward angles reflect the
participant zone of the reaction, while much larger sources observed at forward
angles reflect the expanding, fragmenting and evaporating projectile remnants.
The decrease of the size of the source with increasing momentum is observed at
backward angles while a weaker trend in the opposite direction is observed at
forward angles. The results are compared to the theoretical calculations using
the BUU transport model.Comment: 8 pages, 3 figures, submitted to PR
Role of Ca2+ and L-Phe in Regulating Functional Cooperativity of Disease- Associated ‘‘Toggle’’ Calcium-Sensing Receptor Mutations
The Ca2+-sensing receptor (CaSR) regulates Ca2+ homeostasis in the body by monitoring extracellular levels of Ca2+ ([Ca2+]o) and amino acids. Mutations at the hinge region of the N-terminal Venus flytrap domain (VFTD) produce either receptor inactivation (L173P, P221Q) or activation (L173F, P221L) related to hypercalcemic or hypocalcemic disorders. In this paper, we report that both L173P and P221Q markedly impair the functional positive cooperativity of the CaSR as reflected by [Ca2+]o–induced [Ca2+]i oscillations, inositol-1-phosphate (IP1) accumulation and extracellular signal-regulated kinases (ERK1/2) activity. In contrast, L173F and P221L show enhanced responsiveness of these three functional readouts to [Ca2+]o. Further analysis of the dynamics of the VFTD mutants using computational simulation studies supports disruption in the correlated motions in the loss-offunction CaSR mutants, while these motions are enhanced in the gain-of-function mutants. Wild type (WT) CaSR was modulated by L-Phe in a heterotropic positive cooperative way, achieving an EC50 similar to those of the two activating mutations. The response of the inactivating P221Q mutant to [Ca2+]o was partially rescued by L-Phe, illustrating the capacity of the L-Phe binding site to enhance the positive homotropic cooperativity of CaSR. L-Phe had no effect on the other inactivating mutant. Moreover, our results carried out both in silico and in intact cells indicate that residue Leu173, which is close to residues that are part of the L-Phe-binding pocket, exhibited impaired heterotropic cooperativity in the presence of L-Phe. Thus, Pro221 and Leu173 are important for the positive homo- and heterotropic cooperative regulation elicited by agonist binding
Analysis of phosphatases in ER-negative breast cancers identifies DUSP4 as a critical regulator of growth and invasion.
Estrogen receptor (ER)-negative cancers have a poor prognosis, and few targeted therapies are available for their treatment. Our previous analyses have identified potential kinase targets critical for the growth of ER-negative, progesterone receptor (PR)-negative and HER2-negative, or "triple-negative" breast cancer (TNBC). Because phosphatases regulate the function of kinase signaling pathways, in this study, we investigated whether phosphatases are also differentially expressed in ER-negative compared to those in ER-positive breast cancers. We compared RNA expression in 98 human breast cancers (56 ER-positive and 42 ER-negative) to identify phosphatases differentially expressed in ER-negative compared to those in ER-positive breast cancers. We then examined the effects of one selected phosphatase, dual specificity phosphatase 4 (DUSP4), on proliferation, cell growth, migration and invasion, and on signaling pathways using protein microarray analyses of 172 proteins, including phosphoproteins. We identified 48 phosphatase genes are significantly differentially expressed in ER-negative compared to those in ER-positive breast tumors. We discovered that 31 phosphatases were more highly expressed, while 11 were underexpressed specifically in ER-negative breast cancers. The DUSP4 gene is underexpressed in ER-negative breast cancer and is deleted in approximately 50 % of breast cancers. Induced DUSP4 expression suppresses both in vitro and in vivo growths of breast cancer cells. Our studies show that induced DUSP4 expression blocks the cell cycle at the G1/S checkpoint; inhibits ERK1/2, p38, JNK1, RB, and NFkB p65 phosphorylation; and inhibits invasiveness of TNBC cells. These results suggest that that DUSP4 is a critical regulator of the growth and invasion of triple-negative breast cancer cells
Identification of an L-Phenylalanine Binding Site Enhancing The Cooperative Responses of The Calcium Sensing Receptor to Calcium
Functional positive cooperative activation of the extracellular calcium ([Ca2+]o)-sensing receptor (CaSR), a member of the family C G protein-coupled receptors (GPCRs), by [Ca2+]o or amino acids elicits intracellular Ca2+ ([Ca2+]i) oscillations. Here, we report the central role of predicted Ca2+-binding Site 1 within the hinge region of the extracellular domain (ECD) of CaSR and its interaction with other Ca2+-binding sites within the ECD in tuning functional positive homotropic cooperativity caused by changes in [Ca2+]o. Next, we identify an adjacent L-Phe-binding pocket that is responsible for positive heterotropic cooperativity between [Ca2+]o and L- Phe in eliciting CaSR-mediated [Ca2+]i oscillations. The hetero-communication between Ca2+ and an amino acid globally enhances functional positive homotropic cooperative activation of CaSR in response to [Ca2+]o signaling by positively impacting multiple [Ca2+]o-binding sites within the ECD. Elucidation of the underlying mechanism provides important insights into the longstanding question of how the receptor transduces signals initiated by [Ca2+]o and amino acids into intracellular signaling events
Investigations of three, four, and five-particle exit channels of levels in light nuclei created using a 9C beam
The interactions of a E/A=70-MeV 9C beam with a Be target was used to
populate levels in Be, B, and C isotopes which undergo decay into many-particle
exit channels. The decay products were detected in the HiRA array and the level
energies were identified from their invariant mass. Correlations between the
decay products were examined to deduce the nature of the decays, specifically
to what extent all the fragments were created in one prompt step or whether the
disintegration proceeded in a sequential fashion through long-lived
intermediate states. In the latter case, information on the spin of the level
was also obtained. Of particular interest is the 5-body decay of the 8C ground
state which was found to disintegrate in two steps of two-proton decay passing
through the 6Beg.s. intermediate state. The isobaric analog of 8Cg.s. in 8B was
also found to undergo two-proton decay to the isobaric analog of 6Beg.s. in
6Li. A 9.69-MeV state in 10C was found to undergo prompt 4-body decay to the
2p+2alpha exit channel. The two protons were found to have a strong
enhancementin the diproton region and the relative energies of all four p-alpha
pairs were consistent with the 5Lig.s. resonance
Transforming identities and co-constructing careers of career counselors
New theories for practice, which take account of contextual shifts such as labor market volatility, are essential for maintaining the professional status of career counseling. Career construction theory (CCT), as an exemplar of an innovative, contextually sensitive approach not only provides a way of making sense of the turbulent landscapes in which career transitions are taking place, but also provides practical tools to facilitate individual adaptation to change. However, development and evaluation of new theories and related tools have tended to overlook the career development and support needs of career counselors in the adoption and integration of these approaches into their practice with clients, as well as into their own career development. Here, the focus is on supporting the continuing professional development of career counselors as crucial for the enhancement of practice, through the provision in 2017 of an open access online learning program relating to the changing world of work, with facilitation of dialogue and reflection. The adaptive responses of an international group of participants facing challenges of identity transformation in the workplace, which emerged as they worked through the online learning resource, are examined. Four hundred and two international participants registered, with 86 actively engaging in the course, which was made available over three months, with content analysis of their online dialogue providing insights into the processes of psycho-social adaptation to the career-related challenges they faced. The learning design and course delivery were underpinned by the theory of professional identity transformation (PIT), with a commitment to supporting participants both individually collectively to shape their evolving roles and identities in ways compatible with their life themes. In order to progress toward that goal, processes of co-construction, also central to career construction theory, emerged strongly from the content analysis of data
High prevalence of the neonicotinoid clothianidin in liver and plasma samples collected from gamebirds during autumn sowing
Since neonicotinoid insecticides were introduced to the agricultural market, evidence of the negative impacts of these systemic compounds on non-target species has accumulated. Birds are one of the largest groups of species to inhabit farmland, but the extent of neonicotinoid exposure in avian communities is poorly understood and very little is known about how any exposure may affect wild birds. Here, free-living gamebirds were used as a model group to measure the extent of avian exposure to the neonicotinoid clothianidin via seed treatment. During a typical sowing period of winter cereals treated with clothianidin, blood and liver samples were collected simultaneously from individual hunted gamebird carcasses, both pre- (n = 18) and post-sowing (n = 57) and were analysed for clothianidin via LC/MS-MS. Body weight, fat score and faecal parasite load were also quantified in the birds to ascertain whether any of these health parameters were associated with clothianidin exposure under field conditions. Clothianidin was detected in 6% of individuals sampled pre-sowing and 89% of individuals sampled post-sowing. The frequency of clothianidin detection in plasma samples and the concentration of clothianidin in liver and plasma samples decreased significantly between the first week and 2-4 weeks post-sowing. Faecal parasite load was positively associated with concentrations of clothianidin in the liver (but not plasma) of partridge species, but there was no association between clothianidin concentration and fat score or body weight, for either sample type. This study provides clear evidence that treated seed is a source of pesticide exposure for gamebirds following autumn sowing. These findings have implications for gamebirds worldwide where seed treatments are in use, and will aid the design of any future avian biomonitoring studies for agrochemical compounds
- …