161 research outputs found

    Ferulic acid-4-O-sulfate rather than ferulic acid relaxes arteries and lowers blood pressure in mice

    Get PDF
    Consumption of foods rich in ferulic acid (FA) such as wholegrain cereals, or FA precursors such as chlorogenic acids in coffee, is inversely correlated with risk of cardiovascular disease and type 2 diabetes. As a result of digestion and phase II metabolism in the gut and liver, FA is converted predominantly into ferulic acid-4-O-sulfate (FA-sul), an abundant plasma metabolite. Although FA-sul may be the main metabolite, very little has been reported regarding its bioactivities. We have therefore compared the ex vivo vasorelaxing effect of FA and FA-sul (10−7 - 3.10−5 M) on isolated mouse arteries mounted in tissue myographs. FA-sul, but not FA, elicited a concentration-dependent vasorelaxation of saphenous and femoral arteries and aortae. The FA-sul mediated vasorelaxation was blunted by 1H- [1, 2, 4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a soluble guanylate cyclase (sGC) inhibitor. The role of sGC was confirmed in femoral arteries isolated from sGCα1(−/−) knockout mice. Furthermore, 4-aminopyridine, a specific inhibitor of voltage-dependent potassium channels, significantly decreased FA-sul mediated effects. In anesthetized mice, intravenous injection of FA-sul decreased mean arterial pressure, whereas FA had no effect, confirming the results obtained ex vivo. FA-sul is probably one of the major metabolites accounting for the blood pressure-lowering effects associated with FA consumption

    Imaging of programmed cell death in arrhythmogenic right ventricle cardiomyopathy/dysplasia

    Get PDF
    Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is a myocardial disease that predominantly affects the right ventricle (RV). Its hallmark feature is fibrofatty replacement of the RV myocardium. Apoptosis in ARVC/D has been proposed as an important process that mediates the slow, ongoing loss of heart muscle cells which is followed by ventricular dysfunction. We aimed to establish whether cardiac apoptosis can be assessed noninvasively in patients with ARVC/D. Six patients fulfilling the ARVC/D criteria were studied. Regional myocardial apoptosis was assessed with (99m)Tc-annexin V scintigraphy. Overall, the RV wall showed a higher (99m)Tc-annexin V signal than the left ventricular wall (p = 0.049) and the interventricular septum (p = 0.026). However, significantly increased uptake of (99m)Tc-annexin V in the RV was present in only three of the six ARVC/D patients (p = 0.001, compared to (99m)Tc-annexin V uptake in the RV wall of the other three patients). Our results are suggestive of a chamber-specific apoptotic process. Although the role of apoptosis in ARVC/D is unsolved, the ability to assess apoptosis noninvasively may aid in the diagnostic course. In addition, the ability to detect apoptosis in vivo with (99m)Tc-annexin V scintigraphy might allow individual monitoring of disease progression and response to diverse treatments aimed at counteracting ARVC/D progressio

    Multivariable regression analysis of febrile neutropenia occurrence in early breast cancer patients receiving chemotherapy assessing patient-related, chemotherapy-related and genetic risk factors.

    Get PDF
    BACKGROUND: Febrile neutropenia (FN) is common in breast cancer patients undergoing chemotherapy. Risk factors for FN have been reported, but risk models that include genetic variability have yet to be described. This study aimed to evaluate the predictive value of patient-related, chemotherapy-related, and genetic risk factors. METHODS: Data from consecutive breast cancer patients receiving chemotherapy with 4-6 cycles of fluorouracil, epirubicin, and cyclophosphamide (FEC) or three cycles of FEC and docetaxel were retrospectively recorded. Multivariable logistic regression was carried out to assess risk of FN during FEC chemotherapy cycles. RESULTS: Overall, 166 (16.7%) out of 994 patients developed FN. Significant risk factors for FN in any cycle and the first cycle were lower platelet count (OR = 0.78 [0.65; 0.93]) and haemoglobin (OR = 0.81 [0.67; 0.98]) and homozygous carriers of the rs4148350 variant T-allele (OR = 6.7 [1.04; 43.17]) in MRP1. Other significant factors for FN in any cycle were higher alanine aminotransferase (OR = 1.02 [1.01; 1.03]), carriers of the rs246221 variant C-allele (OR = 2.0 [1.03; 3.86]) in MRP1 and the rs351855 variant C-allele (OR = 2.48 [1.13; 5.44]) in FGFR4. Lower height (OR = 0.62 [0.41; 0.92]) increased risk of FN in the first cycle. CONCLUSIONS: Both established clinical risk factors and genetic factors predicted FN in breast cancer patients. Prediction was improved by adding genetic information but overall remained limited. Internal validity was satisfactory. Further independent validation is required to confirm these findings

    The Concise Guide to PHARMACOLOGY 2023/24:Catalytic receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16180. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.</p

    Reactive oxygen species and small-conductance calcium-dependent potassium channels are key mediators of inflammation-induced hypotension and shock

    Get PDF
    Septic shock is associated with life-threatening vasodilation and hypotension. To cause vasodilation, vascular endothelium may release nitric oxide (NO), prostacyclin (PGI2), and the elusive endothelium-derived hyperpolarizing factor (EDHF). Although NO is critical in controlling vascular tone, inhibiting NO in septic shock does not improve outcome, on the contrary, precipitating the search for alternative therapeutic targets. Using a hyperacute tumor necrosis factor (TNF)-induced shock model in mice, we found that shock can develop independently of the known vasodilators NO, cGMP, PGI2, or epoxyeicosatrienoic acids. However, the antioxidant tempol efficiently prevented hypotension, bradycardia, hypothermia, and mortality, indicating the decisive involvement of reactive oxygen species (ROS) in these phenomena. Also, in classical TNF or lipopolysaccharide-induced shock models, tempol protected significantly. Experiments with (cell-permeable) superoxide dismutase or catalase, N-acetylcysteine and apocynin suggest that the ROS-dependent shock depends on intracellular \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}∙OH ^\bullet {\hbox{OH}} \end{document} radicals. Potassium channels activated by ATP (KATP) or calcium (KCa) are important mediators of vascular relaxation. While NO and PGI2-induced vasodilation involves KATP and large-conductance BKCa channels, small-conductance SKCa channels mediate vasodilation induced by EDHF. Interestingly, also SKCa inhibition completely prevented the ROS-dependent shock. Our data thus indicate that intracellular \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}∙OH ^\bullet {\hbox{OH}} \end{document} and SKCa channels represent interesting new therapeutic targets for inflammatory shock. Moreover, they may also explain why antioxidants other than tempol fail to provide survival benefit during shock

    In vivo isolated kidney perfusion with tumour necrosis factor α (TNF-α) in tumour-bearing rats

    Get PDF
    Isolated perfusion of the extremities with high-dose tumour necrosis factor α (TNF-α) plus melphalan leads to dramatic tumour response in patients with irresectable soft tissue sarcoma or multiple melanoma in transit metastases. We developed in vivo isolated organ perfusion models to determine whether similar tumour responses in solid organ tumours can be obtained with this regimen. Here, we describe the technique of isolated kidney perfusion. We studied the feasibility of a perfusion with TNF-α and assessed its anti-tumour effects in tumour models differing in tumour vasculature. The maximal tolerated dose (MTD) proved to be only 1 μg TNF-α. Higher doses appeared to induce renal failure and a secondary cytokine release with fatal respiratory and septic shock-like symptoms. In vitro, the combination of TNF-α and melphalan did not result in a synergistic growth-inhibiting effect on CC 531 colon adenocarcinoma cells, whereas an additive effect was observed on osteosarcoma ROS-1 cells. In vivo isolated kidney perfusion, with TNF-α alone or in combination with melphalan, did not result in a significant anti-tumour response in either tumour model in a subrenal capsule assay. We conclude that, because of the susceptibility of the kidney to perfusion with TNF-α, the minimal threshold concentration of TNF-α to exert its anti-tumour effects was not reached. The applicability of TNF-α in isolated kidney perfusion for human tumours seems, therefore, questionable. © 1999 Cancer Research Campaig

    Modulation of Macrophage Activation State Protects Tissue from Necrosis during Critical Limb Ischemia in Thrombospondin-1-Deficient Mice

    Get PDF
    International audienceBACKGROUND: Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI). However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1) is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. METHODS AND FINDINGS: Using a genetic model of tsp-1(-/-) mice subjected to femoral artery excision, we report that tsp-1(-/-) mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1(-/-) and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1(-/-) mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1(-/-) mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1(-/-) mice, thereby demonstrating that macrophages mediated tissue protection in these mice. CONCLUSION: This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue repair during CLI. Furthermore, our data suggest that phagocytosis plays a crucial role in promoting a deleterious intra-tissular pro-inflammatory macrophage activation state during critical injuries. Finally, our results describe TSP-1 as a new relevant physiological target during critical leg ischemia

    Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice

    Get PDF
    Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+) cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+) Arg-1(+) myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+) Arg-1(+) phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain
    • …
    corecore