1,956 research outputs found

    A Hawk-Dove game in kleptoparasitic populations

    Get PDF
    Kleptoparasitism, the parasitism by theft, is a widespread biological phenomenon. In this paper we extend earlier models to investigate a population of conspecifics involved in foraging and, potentially, kleptoparasitism. We assume that the population is composed of two types of individuals, Hawks and Doves. The types differ according to their strategic choices when faced with an opportunity to steal and to resist a challenge. Hawks use every opportunity to steal and they resist all challenges. Doves never resist and never steal. The fitness of each type of individual depends upon various natural parameters, for example food density, the handling time of a food item, density of the population, as well as the duration of potential fights over the food. We find the Evolutionarily Stable States (ESSs) for all arameter combinations and show that there are three possible ESSs, pure Hawks, pure Doves, and a mixed population of Hawks and Doves. We show that for any set of parameter values there is exactly one ESS. We further investigate the relationship between our findings and the classical Hawk-Dove game as defined in Maynard Smith 1982. We also show how our model extends the classical on

    A game-theoretical model of kleptoparasitic behavior in an urban gull (Laridae) population

    Get PDF
    Kleptoparasitism (food stealing) is a significant behavior for animals that forage in social groups as it permits some individuals to obtain resources while avoiding the costs of searching for their own food. Evolutionary game theory has been used to model kleptoparasitism, with a series of differential equation-based compartmental models providing significant theoretical insights into behavior in kleptoparasitic populations. In this paper, we apply this compartmental modeling approach to kleptoparasitic behavior in a real foraging population of urban gulls (Laridae). Field data was collected on kleptoparasitism and a model developed that incorporated the same kleptoparasitic and defensive strategies available to the study population. Two analyses were conducted: 1) An assessment of whether the density of each behavior in the population was at an equilibrium. 2) An investigation of whether individual foragers were using Evolutionarily Stable Strategies in the correct environmental conditions. The results showed the density of different behaviors in the population could be at an equilibrium at plausible values for handling time and fight duration. Individual foragers used aggressive kleptoparasitic strategies effectively in the correct environmental conditions but some individuals in those same conditions failed to defend food items. This was attributed to the population being composed of 3 species that differed in competitive ability. These competitive differences influenced the strategies that individuals were able to use. Rather than gulls making poor behavioral decisions these results suggest a more complex 3-species model is required to describe the behavior of this population

    A game-theoretic model of kleptoparasitic behavior in polymorphic populations

    Get PDF
    Kleptoparasitism, the stealing of food by one animal from another, is a widespread biological phenomenon. In this paper we build upon earlier models to investigate a population of conspecifics involved in foraging and, potentially, kleptoparasitism. We assume that the population is composed of four types of individuals, according to their strategic choices when faced with an opportunity to steal and to resist an attack. The fitness of each type of individual depends upon various natural parameters, for example food density, the handling time of a food item and the probability of mounting a successful attack against resistance, as well as the choices that they make. We find the evolutionarily stable strategies (ESSs) for all parameter combinations and show that there are six possible ESSs, four pure and two mixtures of two strategies, that can occur. We show that there is always at least one ESS, and sometimes two or three. We further investigate the influence of the different parameters on when each type of solution occurs

    An acute bout of cycling does not induce compensatory responses in pre-menopausal women not using hormonal contraceptives

    Get PDF
    There is a clear need to improve understanding of the effects of physical activity and exercise on appetite control. Therefore, the acute and short-term effects (three days) of a single bout of cycling on energy intake and energy expenditure were examined in women not using hormonal contraceptives. Sixteen active (n = 8) and inactive (n = 8) healthy pre-menopausal women completed a randomised crossover design study with two conditions (exercise and control). The exercise day involved cycling for 1 h (50% of maximum oxygen uptake) and resting for 2 h, whilst the control day comprised 3 h of rest. On each experimental day participants arrived at the laboratory fasted, consumed a standardised breakfast and an ad libitum pasta lunch. Food diaries and combined heart rate-accelerometer monitors were used to assess free-living food intake and energy expenditure, respectively, over the subsequent three days. There were no main effects or condition (exercise vs control) by group (active vs inactive) interaction for absolute energy intake (P > 0.05) at the ad libitum laboratory lunch meal, but there was a condition effect for relative energy intake (P = 0.004, ηp2 = 0.46) that was lower in the exercise condition (1417 ± 926 kJ vs. 2120 ± 923 kJ). Furthermore, post-breakfast satiety was higher in the active than in the inactive group (P = 0.005, ηp2 = 0.44). There were no main effects or interactions (P > 0.05) for mean daily energy intake, but both active and inactive groups consumed less energy from protein (14 ± 3% vs. 16 ± 4%, P = 0.016, ηp2 = 0.37) and more from carbohydrate (53 ± 5% vs. 49 ± 7%, P = 0.031, ηp2 = 0.31) following the exercise condition. This study suggests that an acute bout of cycling does not induce compensatory responses in active and inactive women not using hormonal contraceptives, while the stronger satiety response to the standardised breakfast meal in active individuals adds to the growing literature that physical activity helps improve the sensitivity of short-term appetite control

    Faculty Productivity and Carnegie Institutional Characteristics within AEJMC Programs

    Get PDF
    This article reports the results of a content analysis of faculty vitae from eighteen ACEJMC programs drawn using stratified random sampling by Carnegie Classification. The findings indicate that faculty members differ by Carnegie Classification on research productivity, highest earned degrees, professional experience, time assignments (for research, teaching, and service), contact and credit hours, and external grants.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
    corecore