67 research outputs found

    A Dataset and Application for Facial Recognition of Individual Gorillas in Zoo Environments

    Get PDF
    We put forward a video dataset with 5k+ facial bounding box annotations across a troop of 7 western lowland gorillas at Bristol Zoo Gardens. Training on this dataset, we implement and evaluate a standard deep learning pipeline on the task of facially recognising individual gorillas in a zoo environment. We show that a basic YOLOv3-powered application is able to perform identifications at 92% mAP when utilising single frames only. Tracking-by-detection-association and identity voting across short tracklets yields an improved robust performance of 97% mAP. To facilitate easy utilisation for enriching the research capabilities of zoo environments, we publish the code, video dataset, weights, and ground-truth annotations at data.bris.ac.uk

    Evaluating Cognitive Enrichment for Zoo-Housed Gorillas Using Facial Recognition

    Get PDF
    The use of computer technology within zoos is becoming increasingly popular to help achieve high animal welfare standards. However, despite its various positive applications to wildlife in recent years, there has been little uptake of machine learning in zoo animal care. In this paper, we describe how a facial recognition system, developed using machine learning, was embedded within a cognitive enrichment device (a vertical, modular finger maze) for a troop of seven Western lowland gorillas (Gorilla gorilla gorilla) at Bristol Zoo Gardens, UK. We explored whether machine learning could automatically identify individual gorillas through facial recognition, and automate the collection of device-use data including the order, frequency and duration of use by the troop. Concurrent traditional video recording and behavioral coding by eye was undertaken for comparison. The facial recognition system was very effective at identifying individual gorillas (97% mean average precision) and could automate specific downstream tasks (for example, duration of engagement). However, its development was a heavy investment, requiring specialized hardware and interdisciplinary expertise. Therefore, we suggest a system like this is only appropriate for long-term projects. Additionally, researcher input was still required to visually identify which maze modules were being used by gorillas and how. This highlights the need for additional technology, such as infrared sensors, to fully automate cognitive enrichment evaluation. To end, we describe a future system that combines machine learning and sensor technology which could automate the collection of data in real-time for use by researchers and animal care staff

    Evaluating cognitive enrichment for zoo-housed gorillas using facial recognition

    Get PDF
    The use of computer technology within zoos is becoming increasingly popular to help achieve high animal welfare standards. However, despite its various positive applications to wildlife in recent years, there has been little uptake of machine learning in zoo animal care. In this paper, we describe how a facial recognition system, developed using machine learning, was embedded within a cognitive enrichment device (a vertical, modular finger maze) for a troop of seven Western lowland gorillas (Gorilla gorilla gorilla) at Bristol Zoo Gardens, UK. We explored whether machine learning could automatically identify individual gorillas through facial recognition, and automate the collection of device-use data including the order, frequency and duration of use by the troop. Concurrent traditional video recording and behavioral coding by eye was undertaken for comparison. The facial recognition system was very effective at identifying individual gorillas (97% mean average precision) and could automate specific downstream tasks (for example, duration of engagement). However, its development was a heavy investment, requiring specialized hardware and interdisciplinary expertise. Therefore, we suggest a system like this is only appropriate for long-term projects. Additionally, researcher input was still required to visually identify which maze modules were being used by gorillas and how. This highlights the need for additional technology, such as infrared sensors, to fully automate cognitive enrichment evaluation. To end, we describe a future system that combines machine learning and sensor technology which could automate the collection of data in real-time for use by researchers and animal care staff

    PanAf20K : a large video dataset for wild ape detection and behaviour recognition

    Get PDF
    The work that allowed for the collection of the dataset was funded by the Max Planck Society, Max Planck Society Innovation Fund, and Heinz L. Krekeler. This work was supported by the UKRI CDT in Interactive AI under grant EP/S022937/1.We present the PanAf20K dataset, the largest and most diverse open-access annotated video dataset of great apes in their natural environment. It comprises more than 7 million frames across ∼20,000 camera trap videos of chimpanzees and gorillas collected at 18 field sites in tropical Africa as part of the Pan African Programme: The Cultured Chimpanzee. The footage is accompanied by a rich set of annotations and benchmarks making it suitable for training and testing a variety of challenging and ecologically important computer vision tasks including ape detection and behaviour recognition. Furthering AI analysis of camera trap information is critical given the International Union for Conservation of Nature now lists all species in the great ape family as either Endangered or Critically Endangered. We hope the dataset can form a solid basis for engagement of the AI community to improve performance, efficiency, and result interpretation in order to support assessments of great ape presence, abundance, distribution, and behaviour and thereby aid conservation efforts. The dataset and code are available from the project website: PanAf20KPeer reviewe

    Style, Character and Revelation in Parry’s Fourth Symphony

    Get PDF

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
    corecore