585 research outputs found

    Depression in small-vessel disease relates to white matter ultrastructural damage, not disability.

    Get PDF
    OBJECTIVE: To determine whether cerebral small-vessel disease (SVD) is a specific risk factor for depression, whether any association is mediated via white matter damage, and to study the role of depressive symptoms and disability on quality of life (QoL) in this patient group. METHODS: Using path analyses in cross-sectional data, we modeled the relationships among depression, disability, and QoL in patients with SVD presenting with radiologically confirmed lacunar stroke (n = 100), and replicated results in a second SVD cohort (n = 100). We then compared the same model in a non-SVD stroke cohort (n = 50) and healthy older adults (n = 203). In a further study, to determine the role of white matter damage in mediating the association with depression, a subgroup of patients with SVD (n = 101) underwent diffusion tensor imaging (DTI). RESULTS: Reduced QoL was associated with depression in patients with SVD, but this association was not mediated by disability or cognition; very similar results were found in the replication SVD cohort. In contrast, the non-SVD stroke group and the healthy older adult group showed a direct relationship between disability and depression. The DTI study showed that fractional anisotropy, a marker of white matter damage, was related to depressive symptoms in patients with SVD. CONCLUSION: These results suggest that in stroke patients without SVD, disability is an important causal factor for depression, whereas in SVD stroke, other factors specific to this stroke subtype have a causal role. White matter damage detected on DTI is one factor that mediates the association between SVD and depression

    Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta

    Get PDF
    Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid

    New missense variants in RELT causing hypomineralised amelogenesis imperfecta

    Get PDF
    Amelogenesis imperfecta (AI) is a heterogeneous group of genetic diseases characterised by dental enamel malformation. Pathogenic variants in at least 33 genes cause syndromic or nonā€syndromic AI. Recently variants in RELT, encoding an orphan receptor in the tumour necrosis factor (TNF) superfamily, were found to cause recessive AI, as part of a syndrome encompassing small stature and severe childhood infections. Here we describe four additional families with autosomal recessive hypomineralised AI due to previously unreported homozygous mutations in RELT. Three families carried a homozygous missense variant in the fourth exon (c.164Cā€‰>ā€‰T, p.[T55I]) and a fourth family carried a homozygous missense variant in the 11th exon (c.1264Cā€‰>ā€‰T, p.[R422W]). We found no evidence of additional syndromic symptoms in affected individuals. Analyses of tooth microstructure with computerized tomography and scanning electron microscopy suggest a role for RELT in ameloblasts' coordination and interaction with the enamel matrix. Microsatellite genotyping in families segregating the T55I variant reveals a shared founder haplotype. These findings extend the RELT pathogenic variant spectrum, reveal a founder mutation in the UK Pakistani population and provide detailed analysis of human teeth affected by this hypomineralised phenotype, but do not support a possible syndromic presentation in all those with RELTā€variant associated AI

    Addition of multiple rare SNPs to known common variants improves the association between disease and gene in the Genetic Analysis Workshop 17 data

    Get PDF
    The upcoming release of new whole-genome genotyping technologies will shed new light on whether there is an associative effect of previously immeasurable rare variants on incidence of disease. For Genetic Analysis Workshop 17, our team focused on a statistical method to detect associations between gene-based multiple rare variants and disease status. We added a combination of rare SNPs to a common variant shown to have an influence on disease status. This method provides us with an enhanced ability to detect the effect of these rare variants, which, modeled alone, would normally be undetectable. Adjusting for significant clinical parameters, several genes were found to have multiple rare variants that were significantly associated with disease outcome

    A Fourth KLK4 Mutation Is Associated with Enamel Hypomineralisation and Structural Abnormalities

    Get PDF
    ā€œAmelogenesis imperfectaā€ (AI) describes a group of genetic conditions that result in defects in tooth enamel formation. Mutations in many genes are known to cause AI, including the gene encoding the serine protease, kallikrein related peptidase 4 (KLK4), expressed during the maturation stage of amelogenesis. In this study we report the fourth KLK4 mutation to be identified in autosomal recessively-inherited hypomaturation type AI, c.632delT, p.(L211Rfs*37) (NM_004917.4, NP_004908.4). This homozygous variant was identified in five Pakistani AI families and is predicted to result in a transcript with a premature stop codon that escapes nonsense mediated decay. However, the protein may misfold, as three of six disulphide bonds would be disrupted, and may be degraded or non-functional as a result. Primary teeth were obtained from one affected individual. The enamel phenotype was characterized using high-resolution computerized X-ray tomography (CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and microhardness testing (MH). Enamel from the affected individual (referred to as KLK4 enamel) was hypomineralised in comparison with matched control enamel. Furthermore, KLK4 inner enamel was hypomineralised compared with KLK4 outer enamel. SEM showed a clear structural demarcation between KLK4 inner and outer enamel, although enamel structure was similar to control tissue overall. EDX showed that KLK4 inner enamel contained less calcium and phosphorus and more nitrogen than control inner enamel and KLK4 outer enamel. MH testing showed that KLK4 inner enamel was significantly softer than KLK4 outer enamel (p < 0.001). However, the hardness of control inner enamel was not significantly different to that of control outer enamel. Overall, these findings suggest that the KLK4 c.632delT mutation may be a common cause of autosomal recessive AI in the Pakistani population. The phenotype data obtained mirror findings in the Klk4ā€¾/ā€¾ mouse and suggest that KLK4 is required for the hardening and mineralization of the inner enamel layer but is less essential for hardening and mineralization of the outer enamel layer

    Phenotype and variant spectrum in the LAMB3 form of amelogenesis imperfecta

    Get PDF
    Amelogenesis imperfecta (AI) is a heterogeneous group of inherited disorders characterized by abnormal formation of dental enamel, either in isolation or as part of a syndrome. Heterozygous variants in laminin subunit beta 3 (LAMB3) cause AI with dominant inheritance in the absence of other cosegregating clinical features. In contrast, biallelic loss-of-function variants in LAMB3 cause recessive junctional epidermolysis bullosa, characterized by life-threatening skin fragility. We identified 2 families segregating autosomal dominant AI with variable degrees of a distinctive hypoplastic phenotype due to pathogenic variants in LAMB3. Whole exome sequencing revealed a nonsense variant (c.3340G>T, p.E1114*) within the final exon in family 1, while Sanger sequencing in family 2 revealed a variant (c.3383-1G>A) in the canonical splice acceptor site of the final exon. Analysis of cDNA from family 2 revealed retention of the final intron leading to a premature termination codon. Two unerupted third molar teeth from individual IV:5 in family 2 were subject to computerized tomography and scanning electron microscopy. LAMB3 molar teeth have a multitude of cusps versus matched controls. LAMB3 enamel was well mineralized but pitted. The architecture of the initially secreted enamel was abnormal, with cervical enamel appearing much less severely affected than coronal enamel. This study further defines the variations in phenotype-genotype correlation for AI due to variants in LAMB3, underlines the clustering of nonsense and frameshift variants causing AI in the absence of junctional epidermolysis bullosa, and highlights the shared AI phenotype arising from variants in genes coding for hemidesmosome proteins

    Genetic risk for Alzheimer's disease influences neuropathology via multiple biological pathways

    Get PDF
    Alzheimer's disease is a highly heritable, common neurodegenerative disease characterised neuropathologically by the accumulation of Ī²-amyloid plaques and tau-containing neurofibrillary tangles. In addition to the well-established risk associated with the APOE locus, there has been considerable success in identifying additional genetic variants associated with Alzheimer's disease. Major challenges in understanding how genetic risk influences the development of Alzheimer's disease are clinical and neuropathological heterogeneity, and the high level of accompanying comorbidities. We report a multimodal analysis integrating longitudinal clinical and cognitive assessment with neuropathological data collected as part of the Brains for Dementia Research (BDR) study to understand how genetic risk factors for Alzheimer's disease influence the development of neuropathology and clinical performance. 693 donors in the BDR cohort with genetic data, semi-quantitative neuropathology measurements, cognitive assessments and established diagnostic criteria were included in this study. We tested the association of APOE genotype and Alzheimerā€™s disease polygenic risk score - a quantitative measure of genetic burden - with survival, four common neuropathological features in Alzheimer's disease brains (neurofibrillary tangles, Ī²-amyloid plaques, Lewy bodies and TDP-43 proteinopathy), clinical status (clinical dementia rating) and cognitive performance (Mini-Mental State Exam, Montreal Cognitive Assessment). The APOE Īµ4 allele was significantly associated with younger age of death in the BDR cohort. Our analyses of neuropathology highlighted two independent pathways from APOE Īµ4, one where Ī²-amyloid accumulation co-occurs with the development of tauopathy, and a second characterized by direct effects on tauopathy independent of Ī²-amyloidosis. Although we also detected association between APOE Īµ4 and dementia status and cognitive performance, these were all mediated by tauopathy, highlighting that they are a consequence of the neuropathological changes. Analyses of polygenic risk score identified associations with tauopathy and Ī²-amyloidosis, which appeared to have both shared and unique contributions, suggesting that different genetic variants associated with Alzheimerā€™s disease affect different features of neuropathology to different degrees. Taken together, our results provide insight into how genetic risk for Alzheimerā€™s disease influences both the clinical and pathological features of dementia, increasing our understanding about the interplay between APOE genotype and other genetic risk factors

    Single-nucleotide polymorphisms: analysis by mass spectrometry

    Get PDF
    Matrix-assisted laser desorption-ionization (MALDI) mass spectrometry has evolved as a powerful method for analyzing nucleic acids. Here we provide protocols for genotyping single-nucleotide polymorphisms (SNPs) by MALDI based on PCR and primer extension to generate allele-specific products. Furthermore, we present three different approaches for sample preparation of primer-extension products before MALDI analysis and discuss their potential areas of application. The first approach, the 'GOOD' assay, is a purification-free procedure that uses DNA-modification chemistry, including alkylation of phosphorothioate linkages in the extension primers. The other two approaches use either solid-phase extraction or microarray purification for the purification of primer-extension products. Depending on the reaction steps of the various approaches, the protocols take about 6ā€“8 hours

    Designing Building Skins with Biomaterials

    Get PDF
    This chapter presents several successful examples of biomaterial facade design. It discusses facade function from aesthetical, functional, and safety perspectives. Special focus is directed on novel concepts for adaptation and special functionalities of facades. Analysis of the structure morphologies and aesthetic impressions related to the bio-based building facades is supported with photographs collected by authors in various locations. Finally, particular adaptations and special functionalities of bio-based facades going beyond traditional building envelope concept are supported by selected case studies

    Reversion of the ELISPOT test after treatment in Gambian tuberculosis cases

    Get PDF
    BACKGROUND: New tools are required to improve tuberculosis (TB) diagnosis and treatment, including enhanced ability to compare new treatment strategies. The ELISPOT assay uses Mycobacterium tuberculosis-specific antigens to produce a precise quantitative readout of the immune response to pathogen. We hypothesized that TB patients in The Gambia would have reduced ELISPOT counts after successful treatment. METHODS: We recruited Gambian adults with sputum smear and culture positive tuberculosis for ELISPOT assay and HIV test, and followed them up one year later to repeat testing and document treatment outcome. We used ESAT-6, CFP-10 and Purified Protein Derivative (PPD) as stimulatory antigens. We confirmed the reliability of our assay in 23 volunteers through 2 tests one week apart, comparing within and between subject variation. RESULTS: We performed an ELISPOT test at diagnosis and 12 months later in 89 patients. At recruitment, 70/85 HIV-negative patients (82%) were ESAT-6 or CFP-10 (EC) ELISPOT positive, 77 (90%) were PPD ELISPOT positive. Eighty-two cases (96%) successfully completed treatment: 44 (55%; p < 0.001) were EC ELISPOT negative at 12 months, 17 (21%; p = 0.051) were PPD ELISPOT negative. Sixty (73%) cured cases had a CFP-10 ELISPOT count decrease, 64 (78%) had an ESAT-6 ELISPOT count decrease, 58 (70%) had a PPD ELISPOT count decrease. There was a mean decline of 25, 44 and 47 SFU/2 Ɨ 10(5 )cells for CFP-10, ESAT-6 and PPD respectively (p < 0.001 for all). Three of 4 HIV positive patients were cured, all 3 underwent ELISPOT reversion; all 4 not cured subjects (3 HIV-negative, 1 HIV positive) were ESAT-6, CFP-10 and PPD ELISPOT positive at 12 months. CONCLUSION: Successful tuberculosis treatment is accompanied by a significant reduction in the M. tuberculosis-specific antigen ELISPOT count. The ELISPOT has potential as a proxy measure of TB treatment outcome. Further investigation into the decay kinetics of T-cells with treatment is warranted
    • ā€¦
    corecore