12 research outputs found

    The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate

    Get PDF
    AIM : The Arctic has experienced marked climatic differences between glacial and interglacial periods and is now subject to a rapidly warming climate. Knowledge of the effects of historical processes on current patterns of diversity may aid predictions of the responses of vegetation to future climate change. We aim to test whether plant species and genetic diversity patterns are correlated with time since deglaciation at regional and local scales. We also investigate whether species richness is correlated with genetic diversity in vascular plants. LOCATION : Circumarctic. METHODS : We investigated species richness of the vascular plant flora of 21 floristic provinces and examined local species richness in 6215 vegetation plots distributed across the Arctic. We assessed levels of genetic diversity inferred from amplified fragment length polymorphism variation across populations of 23 common Arctic species. Correlations between diversity measures and landscape age (time since deglaciation) as well as variables characterizing current climate were analysed using spatially explicit simultaneous autoregressive models. RESULTS : lts Regional species richness of vascular plants and genetic diversity were correlated with each other, and both showed a positive relationship with landscape age. Plot species richness showed differing responses for vascular plants, bryophytes and lichens. At this finer scale, the richness of vascular plants was not significantly related to landscape age, which had a small effect size compared to the models of bryophyte and lichen richness. MAIN CONCLUSION : Our study suggests that imprints of past glaciations in Arctic vegetation diversity patterns at the regional scale are still detectable today. Since Arctic vegetation is still limited by post-glacial migration lag, it will most probably also exhibit lags in response to current and future climate change. Our results also suggest that local species richness at the plot scale is more determined by local habitat factors.Compilation of the species richness data was made possible through the TFI Networks grant to CD, “Effect Studies and Adaptation to Climate Change,” under the Norforsk initiative (2011 – 2014) which supported two CBIONET-AVA workshops held in Denmark during 2013. The genetic studies were funded by the Research Council of Norway (grant nos. 150322/720 and 170952/V40 to CB).http://http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1466-82382017-04-30hb2016Plant Production and Soil Scienc

    Conservation Issues of Modern Oil Paintings: A Molecular Model on Paint Curing

    No full text
    Conspectus The 20th and 21st century oil paintings are presenting a range of challenging conservation problems that can be distinctly different from those noted in paintings from previous centuries. These include the formation of vulnerable surface “skins” of medium and exudates on paint surfaces, efflorescence, unpredictable water and solvent sensitivity, and incidence of paint dripping which can occur within a few years after the paintings were completed. Physicochemical studies of modern oil paints and paintings in recent years have identified a range of possible causal factors for the noted sensitivity of painting surfaces to water and protic solvents, including the formation of water-soluble inorganic salts and/or the accumulation of diacids at the paint surface, which are oxidation products of the oil binder. Other studies have investigated the relationship between water sensitivity and the degree of hydrolysis of the binder, the proportions of free fatty and dicarboxylic acids formed, as well as the relative content of free metal soaps. Thus far, data indicate that the qualitative and quantitative composition of the nonpolymerized fractions of the oil binder cannot be solely or directly related to the solvent sensitivity of the paint film. Conclusions therefore indicate that the polymeric network, formed upon the curing of the oil, plays a fundamental role, suggesting that water sensitivity, at least in some cases, may be related to the poor development and/or polar nature of the formed polymeric network rather than the composition of the nonpolymerized fractions. Poorly developed polymeric networks, in combination with the migration of polar fractions, i.e., dicarboxylic and hydroxylated fatty acids toward the paint surface, can be related to other degradation phenomena, including the separation and migration of the paint binder which can lead to the presence of observable skins of medium as well as the more alarming phenomenon of liquefying or dripping oil paints. It is thus crucial to understand the molecular composition of these paints and their physicochemical behavior to aid the further development of appropriate conservation and preservation strategies, as the risks currently associated with surface cleaning treatments and other conservation procedures can be unacceptably high. This Account reviews the relationships between the degradation phenomena associated with modern oil paintings and the chemical composition of the oil binder and proposes a molecular model for the development of water sensitivity and other noted degradation phenomena. It is suggested that water sensitivity (and possibly other degradation phenomena) is a consequence of processes that take place upon curing, and in particular to the rate of formation and decomposition of alkoxyl and peroxyl radicals. These reactions are strongly dependent on the type of oil present, the ambient environmental conditions, and the chemical and physical nature of the pigments and additives present in the paint formulation. When the curing environment is oxidizing, the chemistry of peroxyl radicals dominates the reaction pathways, and oxidative decomposition of the paint film overwhelms cross-linking reactions

    A raster version of the Circumpolar Arctic Vegetation Map (CAVM)

    Get PDF
    Land cover maps are the basic data layer required for understanding and modeling ecological patterns and processes. The Circumpolar Arctic Vegetation Map (CAVM), produced in 2003, has been widely used as a base map for studies in the arctic tundra biome. However, the relatively coarse resolution and vector format of the map were not compatible with many other data sets. We present a new version of the CAVM, building on the strengths of the original map, while providing a finer spatial resolution, raster format, and improved mapping. The Raster CAVM uses the legend, extent and projection of the original CAVM. The legend has 16 vegetation types, glacier, saline water, freshwater, and non-arctic land. The Raster CAVM divides the original rock-water-vegetation complex map unit that mapped the Canadian Shield into two map units, distinguishing between areas with lichen- and shrub-dominated vegetation. In contrast to the original hand-drawn CAVM, the new map is based on unsupervised classifications of seventeen geographic/floristic sub-sections of the Arctic, using AVHRR and MODIS data (reflectance and NDVI) and elevation data. The units resulting from the classification were modeled to the CAVM types using a wide variety of ancillary data. The map was reviewed by experts familiar with their particular region, including many of the original authors of the CAVM from Canada, Greenland (Denmark), Iceland, Norway (including Svalbard), Russia, and the U.S. The analysis presented here summarizes the area, geographical distribution, elevation, summer temperatures, and NDVI of the map units. The greater spatial resolution of the Raster CAVM allowed more detailed mapping of water-bodies and mountainous areas. It portrays coastal-inland gradients, and better reflects the heterogeneity of vegetation type distribution than the original CAVM. Accuracy assessment of random 1-km pixels interpreted from 6 Landsat scenes showed an average of 70% accuracy, up from 39% for the original CAVM. The distribution of shrub-dominated types changed the most, with more prostrate shrub tundra mapped in mountainous areas, and less low shrub tundra in lowland areas. This improved mapping is important for quantifying existing and potential changes to land cover, a key environmental indicator for modeling and monitoring ecosystems. The final product is publicly available at www.geobotany.uaf.edu and at Mendeley Data, DOI: 10.17632/c4xj5rv6kv.1

    Tetraploids do not form cushions:association of ploidy level, growth form and ecology in the High Arctic Saxifraga oppositifolia L. s. lat. (Saxifragaceae) in Svalbard

    Get PDF
    <p>Saxifraga oppositifolia L. is a common circumpolar plant species that displays considerable morphological and genetic variation throughout its range. It is mainly diploid, but tetraploids are reported from several regions. The growth form varies from prostate to cushion-shaped, and the plant thrives in wet snow beds as well as on dry ridges. This variation has triggered the curiosity of many researchers, but as yet, no one has explained the observed morphological variation using ecological and/or genetic factors. However, the ploidy level has rarely been taken into account. This is the first study that demonstrates a significant correlation between ploidy level, ecology and growth form in S. oppositifolia. We successfully analysed 193 individuals of S. oppositifolia from 15 locations in Svalbard to investigate possible relationships among growth forms (prostrate, intermediate and cushion), ecological factors (vegetation and soil characteristics) and ploidy level. Results from flow cytometry reported 106 diploids, eight triploids and 79 tetraploids. Tetraploids almost exclusively showed prostrate growth, while the diploids displayed all three growth forms, evidence that growth form is at least partly genetically determined. Our analyses of environmental and vegetation data in relation to ploidy level indicated overlapping niches, but the tetraploids showed a narrower niche, and one shifted towards more benign habitats characterized by higher pH, higher soil temperatures and higher cover of vascular plants. The latter may suggest that tetraploids are slightly better competitors, but less hardy. Thus, autopolyploidy in S. oppositifolia has expanded the ecological amplitude of this species complex.</p>
    corecore