261 research outputs found

    The Vanishing Sociology-Social Work Alliance: A Study in the Politics of Professionalism

    Get PDF
    The undergraduate sociology-social work alliance in sociology departments has a long tradition in American colleges despite ideological differences between the two disciplines. Recently this old alliance shows signs of disintegration. This paper argues that the recent emphasis on professionalization of undergraduate social work through the use of accrediting standards coupled with the control of Federal social work training grants have placed new pressures on the old alliance. Evidence is presented which indicates that the conflict is being resolved in the direction of greater administrative specialization and autonomy for social work

    Mapping habitat indices across river networks using spatial statistical modelling of River Habitat Survey data

    Get PDF
    Freshwater ecosystems are declining faster than their terrestrial and marine counterparts because of physical pressures on habitats. European legislation requires member states to achieve ecological targets through the effective management of freshwater habitats. Maps of habitats across river networks would help diagnose environmental problems and plan for the delivery of improvement work. Existing habitat mapping methods are generally time consuming, require experts and are expensive to implement. Surveys based on sampling are cheaper but provide patchy representations of habitat distribution. In this study, we present a method for mapping habitat indices across networks using semi-quantitative data and a geostatistical technique called regression kriging. The method consists of the derivation of habitat indices using multivariate statistical techniques that are regressed on map-based covariates such as altitude, slope and geology. Regression kriging combines the Generalised Least Squares (GLS) regression technique with a spatial analysis of model residuals. Predictions from the GLS model are ‘corrected’ using weighted averages of model residuals following an analysis of spatial correlation. The method was applied to channel substrate data from the River Habitat Survey in Great Britain. A Channel Substrate Index (CSI) was derived using Correspondence Analysis and predicted using regression kriging. The model explained 74% of the main sample variability and 64% in a test sample. The model was applied to the English and Welsh river network and a map of CSI was produced. The proposed approach demonstrates how existing national monitoring data and geostatistical techniques can be used to produce continuous maps of habitat indices at the national scale

    NORA moving forward: Developing an oyster restoration network in Europe to support the Berlin Oyster Recommendation

    Get PDF
    1. The Native Oyster Restoration Alliance (NORA) supports the protection and ecological restoration of the native European oyster, Ostrea edulis, and its habitat across its current and historical biogeographical range. NORA works to overcome barriers to the conservation, restoration, and recovery of the European oyster by providing a platform for the NORA community to collaborate and participate in knowledge exchange. NORA seeks to support responsible restoration practice, in compliance with biosecurity and sustainability. 2. Against this background, the NORA community formulated a series of specific recommendations, the Berlin Oyster Recommendation, to support native oyster restoration by developing and applying best practice with the aim to recover healthy and resilient marine ecosystems. In combination with the Standards for Ecological Restoration (SER) and the Restoration Guidelines for Shellfish Reefs, the Berlin Oyster Recommendation is a relevant tool for successful and sustainable oyster restoration in Europe. 3. The establishment of NORA working groups will support the implementation and further development of the six corresponding recommendations. Current NORA working groups cover site selection, biosecurity, production, and monitoring. The site selection working group will address the identification of suitable sites for oyster restoration to support policy relevant decision making and the conservation, reinforcement, or reintroduction of native oysters. The biosecurity working group will develop biosecurity guidelines for native oyster restoration in Europe. The production working group will assess the potential of standards for seed oyster production and supply in order to enhance production appropriate for restoration purposes. In close collaboration with the Native Oyster Network – UK & Ireland (NON), the monitoring working group will produce a monitoring guidelines handbook to provide metrics and methods that will be suitable across the range of O. edulis projects in Europe for the documentation of restoration success and ecosystem recovery. 4. The Berlin Oyster Recommendation was examined and interpreted by NORA experts in the context of the further development of joint guidelines for the practice of successful and sustainable native oyster restoration

    Atmospheric Methane : Comparison Between Methane's Record in 2006–2022 and During Glacial Terminations

    Get PDF
    Atmospheric methane's rapid growth from late 2006 is unprecedented in the observational record. Assessment of atmospheric methane data attributes a large fraction of this atmospheric growth to increased natural emissions over the tropics, which appear to be responding to changes in anthropogenic climate forcing. Isotopically lighter measurements of (Figure presented.) are consistent with the recent atmospheric methane growth being mainly driven by an increase in emissions from microbial sources, particularly wetlands. The global methane budget is currently in disequilibrium and new inputs are as yet poorly quantified. Although microbial emissions from agriculture and waste sources have increased between 2006 and 2022 by perhaps 35 Tg/yr, with wide uncertainty, approximately another 35–45 Tg/yr of the recent net growth in methane emissions may have been driven by natural biogenic processes, especially wetland feedbacks to climate change. A model comparison shows that recent changes may be comparable or greater in scale and speed than methane's growth and isotopic shift during past glacial/interglacial termination events. It remains possible that methane's current growth is within the range of Holocene variability, but it is also possible that methane's recent growth and isotopic shift may indicate a large-scale reorganization of the natural climate and biosphere is under way

    Atmospheric Methane: Comparison Between Methane's Record in 2006–2022 and During Glacial Terminations

    Get PDF
    Atmospheric methane's rapid growth from late 2006 is unprecedented in the observational record. Assessment of atmospheric methane data attributes a large fraction of this atmospheric growth to increased natural emissions over the tropics, which appear to be responding to changes in anthropogenic climate forcing. Isotopically lighter measurements of d13C-CH4 are consistent with the recent atmospheric methane growth being mainly driven by an increase in emissions from microbial sources, particularly wetlands. The global methane budget is currently in disequilibrium and new inputs are as yet poorly quantified. Although microbial emissions from agriculture and waste sources have increased between 2006 and 2022 by perhaps 35 Tg/yr, with wide uncertainty, approximately another 35–45 Tg/yr of the recent net growth in methane emissions may have been driven by natural biogenic processes, especially wetland feedbacks to climate change. A model comparison shows that recent changes may be comparable or greater in scale and speed than methane's growth and isotopic shift during past glacial/interglacial termination events. It remains possible that methane's current growth is within the range of Holocene variability, but it is also possible that methane's recent growth and isotopic shift may indicate a large-scale reorganization of the natural climate and biosphere is under way

    Probing the local nature of excitons and plasmons in few-layer MoS₂

    Get PDF
    Excitons and plasmons are the two most fundamental types of collective electronic excitations occurring in solids. Traditionally, they have been studied separately using bulk techniques that probe their average energetic structure over large spatial regions. However, as the dimensions of materials and devices continue to shrink, it becomes crucial to understand how these excitations depend on local variations in the crystal- and chemical structure on the atomic scale. Here, we use monochromated low-loss scanning-transmission-electron-microscopy electron-energy-loss spectroscopy, providing the best simultaneous energy and spatial resolution achieved to-date to unravel the full set of electronic excitations in few-layer MoS₂ nanosheets over a wide energy range. Using first-principles, many-body calculations we confirm the excitonic nature of the peaks at ~ 2 and ~ 3 eV in the experimental electron-energy-loss spectrum and the plasmonic nature of higher energy-loss peaks. We also rationalise the non-trivial dependence of the electron-energy-loss spectrum on beam and sample geometry such as the number of atomic layers and distance to steps and edges. Moreover, we show that the excitonic features are dominated by the long wavelength (q = 0) components of the probing field, while the plasmonic features are sensitive to a much broader range of q-vectors, indicating a qualitative difference in the spatial character of the two types of collective excitations. Our work provides a template protocol for mapping the local nature of electronic excitations that open new possibilities for studying photo-absorption and energy transfer processes on a nanometer scale

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?

    Get PDF
    Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified
    corecore