76 research outputs found

    When Myths Collide: An Analysis of Conflicting U.S.-Japanese Views on Economics, Law, and Values

    Get PDF
    This paper examines why Americans so often feel compelled to describe the Japanese in such strong terms. Americans are threatened by Japan. It is not that Japan is stronger, or bigger. The problem is that the Japanese are perceived as different. The difference threatens American assumptions about the American way. This will be illustrated by first reviewing what the problem is between the United States and Japan - centering on the trade imbalance. Then some scholars\u27 analyses of this problem are reviewed, not to find the cause of the problem, but to identify common themes. The common theme is that Japan and the United States do things differently. The differences are reflected in the way government and business relate, in the different role of law in the two societies and in different perceptions about values inherent in the individual or the community. These dif- ferences are described, at least as reflected in the scholarly literature on the subjects. Finally, the hope is that by recognizing that the Japanese challenge the American myth about the market economy, and how it should function in terms of individualism and societal relations, one can come to the conclusion that the strong terms used to describe Japanese conduct mask the real problem: that Japan challenges America\u27s myth about itself

    The Pollution Exclusion: Implementing the Social Policy of Preventing Pollution Through the Insurance Policy

    Get PDF

    The use of a tissue engineered media equivalent in the study of a novel smooth muscle cell phenotype

    Get PDF
    An increase in coronary disease prevalence and mortality highlights the growing need for therapies to treat atherosclerotic vessels. While current bypass procedures utilize autologous vessels for small caliber grafts, there is a big push towards the use of engineered tissues to bypass diseased portions of arteries. Cardiovascular tissue engineering is the emerging discipline that aims to create a functional substitute. Ideally, a tissue engineered blood vessel would possess the relevant cells and matrix proteins that interact in a physiologic manner and will respond to the environmental cues of the host. A particular obstacle to achieving appropriate vessel structure is the inclusion of elastin in a tissue engineered media equivalent. Rat arterial smooth muscle cells that were retrovirally mediated to overexpress versican V3 have been shown to have an enhanced expression of tropoelastin in vitro as well as in injury models. The unique tropoelastin expression by these adult cells was studied in the context of tissue engineered media equivalents. Changes to the extracellular matrix architecture and composition, stimulation with medium additives, and cyclic distension, were shown to increase tropoelastin synthesis in V3 versican overexpressing cells. This study not only expanded the characterization of V3 versican overexpressing smooth muscle cells, it also explored the novel use of these cells as a tropoelastin source in a tissue engineered media equivalent.Ph.D.Committee Chair: Nerem, Robert; Committee Member: Chaikof, Elliot; Committee Member: Taylor, W. Robert; Committee Member: Vito, Raymond; Committee Member: Wight, Thoma

    Spider-Man, Terror of the Comics Code Authority

    Get PDF
    Storytelling prize winner in the Fall 2023 Jurgen Banned Art Comics Contest A humorous comic about how Spider-Man comics emboldened the comics industry to reject oversight and censorship by the C.C.A.https://scholarscompass.vcu.edu/jurgen/1019/thumbnail.jp

    Ion‐driven instabilities in the solar wind: Wind observations of 19 March 2005

    Full text link
    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. But it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft‐frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field Bo. The proton velocity distributions during these events are characterized by two components: a more dense, slower core and a less dense, faster beam. Observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x Bo = 0; for two events the most unstable mode is the AlfvĂ©n‐cyclotron instability driven by a proton component temperature anisotropy T⊄/T|| > 1 (where the subscripts denote directions relative to Bo), and for three events the most unstable mode is the right‐hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.Key PointsIon temperature anisotropies and proton beam/core flows are sources of enhanced field observationsFor two events Alfven‐cyclotron modes are most unstableFor three events magnetosonic modes are most unstablePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137412/1/jgra52322.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137412/2/jgra52322_am.pd

    Suprathermal electron environment of comet 67P/Churyumov-Geraimenko: Observations from the Rosetta Ion and Electron Sensor

    Get PDF
    CONTEXT. The Rosetta spacecraft is currently escorting comet 67P/Churyumov-Gerasimenko until its perihelion approach at 1.2 AU. This mission has provided unprecedented views into the interaction of the solar wind and the comet as a function of heliocentric distance. AIMS. We study the interaction of the solar wind and comet at large heliocentric distances (>2 AU) using data from the Rosetta Plasma Consortium Ion and Electron Sensor (RPC-IES). From this we gain insight into the suprathermal electron distribution, which plays an important role in electron-neutral chemistry and dust grain charging. METHODS. Electron velocity distribution functions observed by IES fit to functions used to previously characterize the suprathermal electrons at comets and interplanetary shocks. We used the fitting results and searched for trends as a function of cometocentric and heliocentric distance. RESULTS. We find that interaction of the solar wind with this comet is highly turbulent and stronger than expected based on historical studies, especially for this weakly outgassing comet. The presence of highly dynamical suprathermal electrons is consistent with observations of comets (e.g., Giacobinni-Zinner, Grigg-Skjellerup) near 1 AU with higher outgassing rates. However, comet 67P/Churyumov-Gerasimenko is much farther from the Sun and appears to lack an upstream bow shock. CONCLUSIONS. The mass loading process, which likely is the cause of these processes, plays a stronger role at large distances from the Sun than previously expected. We discuss the possible mechanisms that most likely are responsible for this acceleration: heating by waves generated by the pick-up ion instability, and the admixture of cometary photoelectrons

    Characterizing cometary electrons with kappa distributions

    Get PDF
    The Rosetta spacecraft has escorted comet 67P/Churyumov-Gerasimenko since 6 August 2014 and has offered an unprecedented opportunity to study plasma physics in the coma. We have used this opportunity to make the fi rst characterization of cometary electrons with kappa distributions. Two three-dimensional kappa functions were fi t to the observations, which we interpret as two populations of dense and warm (density=10cm 3 , temperature=2×10 5 K, invariant kappa index=10 > 1000), and rare fi ed and hot (density=0.005cm 3 , temperature=5×10 5 K, invariant kappa index=1 – 10) electrons. We fi t the observations on 30 October 2014 when Rosetta was 20km from 67P, and 3AU from the Sun. We repeated the analysis on 15 August 2015 when Rosetta was 300km from the comet and 1.3AU from the Sun. Comparing the measurements on both days gives the fi rst comparison of the cometary electron environment between a nearly inactive comet far from the Sun and an active comet near perihelion. We fi nd that the warm population density increased by a factor of 3, while the temperature cooled by a factor of 2, and the invariant kappa index was unaffected. We fi nd that the hot population density increased by a factor of 10, while the temperature and invariant kappa index were unchanged. We conclude that the hot population is likely the solar wind halo electrons in the coma. The warm population is likely of cometary origin, but its mechanism for production is not known

    The Rosetta Ion and Electron Sensor (IES)measurement of the development of pickup ions from comet 67P/Churyumov-Gerasimenko

    Get PDF
    The Rosetta Ion and Electron Sensor (IES) has been measuring solar wind ions intermittently since exiting from hibernation in May 2014. On 19 August, when Rosetta was ~80 km from the comet 67P/Churyumov-Gerasimenko, which was ~3.5 AU from the Sun, IES began to see ions at its lowest energy range, ~4–10 eV. We identify these as ions created from neutral species emitted by the comet nucleus, photoionized by solar UV radiation in the neighborhood of the Rosetta spacecraft (S/C), and attracted by the small negative potential of the S/C resulting from the population of thermal electrons. Later, IES began to see higher-energy ions that we identify as having been picked up and accelerated by the solar wind. IES continues to measure changes in the solar wind and the development of the pickup ion structure

    Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko

    Get PDF
    International audienceThe data from all Rosetta plasma consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the draped magnetic field around the comet, and the increase in solar wind electrons enhanced the ionization of the outflow gas through collisional ionization. The new ions are picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in a high-ÎČ plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modes are observed: one of small size generated by locally ionized water and one of large size generated by ionization and pickup farther away from the comet
    • 

    corecore