20 research outputs found

    To Key or Not to Key: A New Key to Simplify & Improve the Accuracy of Insect Identification

    Full text link
    Insects have extraordinary species richness: over a million species have been identified, and even more await discovery and classification. Given their abundance and diversity, insects are excellent teaching tools for science classrooms. However, accurate insect identification can be especially challenging for beginning students. Accordingly, we have developed a dichotomous key that both precollege and university instructors and students can use efficiently to correctly identify 18 taxonomic orders of insects. Our key was developed to target insects most commonly encountered throughout the coastal southeastern United States, but it can easily be adapted to other regions. This key is novel in that it incorporates not only adult insects but also their immature stages. In addition, we included insects that are likely to be collected in all seasons, facilitating implementation in the classroom throughout the academic year.</jats:p

    Microbial Diversity in Anaerobic Sediments at Río Tinto, a Naturally Acidic Environment with a High Heavy Metal Content▿†

    No full text
    The Tinto River is an extreme environment located at the core of the Iberian Pyritic Belt (IPB). It is an unusual ecosystem due to its size (100 km long), constant acidic pH (mean pH, 2.3), and high concentration of heavy metals, iron, and sulfate in its waters, characteristics that make the Tinto River Basin comparable to acidic mine drainage (AMD) systems. In this paper we present an extensive survey of the Tinto River sediment microbiota using two culture-independent approaches: denaturing gradient gel electrophoresis and cloning of 16S rRNA genes. The taxonomic affiliation of the Bacteria showed a high degree of biodiversity, falling into 5 different phyla: Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinobacteria; meanwhile, all the Archaea were affiliated with the order Thermoplasmatales. Microorganisms involved in the iron (Acidithiobacillus ferrooxidans, Sulfobacillus spp., Ferroplasma spp., etc.), sulfur (Desulfurella spp., Desulfosporosinus spp., Thermodesulfobium spp., etc.), and carbon (Acidiphilium spp., Bacillus spp., Clostridium spp., Acidobacterium spp., etc.) cycles were identified, and their distribution was correlated with physicochemical parameters of the sediments. Ferric iron was the main electron acceptor for the oxidation of organic matter in the most acid and oxidizing layers, so acidophilic facultative Fe(III)-reducing bacteria appeared widely in the clone libraries. With increasing pH, the solubility of iron decreases and sulfate-reducing bacteria become dominant, with the ecological role of methanogens being insignificant. Considering the identified microorganisms—which, according to the rarefaction curves and Good's coverage values, cover almost all of the diversity—and their corresponding metabolism, we suggest a model of the iron, sulfur, and organic matter cycles in AMD-related sediments
    corecore