79 research outputs found

    Two-dimensional SIR epidemics with long range infection

    Full text link
    We extend a recent study of susceptible-infected-removed epidemic processes with long range infection (referred to as I in the following) from 1-dimensional lattices to lattices in two dimensions. As in I we use hashing to simulate very large lattices for which finite size effects can be neglected, in spite of the assumed power law p(x)xσ2p({\bf x})\sim |{\bf x}|^{-\sigma-2} for the probability that a site can infect another site a distance vector x{\bf x} apart. As in I we present detailed results for the critical case, for the supercritical case with σ=2\sigma = 2, and for the supercritical case with 0<σ<20< \sigma < 2. For the latter we verify the stretched exponential growth of the infected cluster with time predicted by M. Biskup. For σ=2\sigma=2 we find generic power laws with σ\sigma-dependent exponents in the supercritical phase, but no Kosterlitz-Thouless (KT) like critical point as in 1-d. Instead of diverging exponentially with the distance from the critical point, the correlation length increases with an inverse power, as in an ordinary critical point. Finally we study the dependence of the critical exponents on σ\sigma in the regime 0<σ<20<\sigma <2, and compare with field theoretic predictions. In particular we discuss in detail whether the critical behavior for σ\sigma slightly less than 2 is in the short range universality class, as conjectured recently by F. Linder {\it et al.}. As in I we also consider a modified version of the model where only some of the contacts are long range, the others being between nearest neighbors. If the number of the latter reaches the percolation threshold, the critical behavior is changed but the supercritical behavior stays qualitatively the same.Comment: 14 pages, including 29 figure

    An isotopic effect in phi photoproduction at a few GeV

    Full text link
    A distinct isotopic effect in phi photoproduction at 2-5 GeV region is identified by examining the production amplitudes due to Pomeron-exchange and meson-exchange mechanisms. This effect is mainly caused by the pi-eta interference constrained by SU(3) symmetry and the isotopic structure of the gamma NN coupling in the direct phi-radiation amplitude. It can be tested experimentally by measuring differences in the polarization observables between the gamma-p and gamma-n reactions.Comment: 11 pages, 6 figure

    Walking parameters of older adults from a lower back inertial measurement unit, a 6-year longitudinal observational study

    Get PDF
    Gait changes during aging and differs between sexes. Inertial measurement units (IMUs) enable accurate quantitative evaluations of gait in ambulatory environments and in large populations. This study aims to provide IMU-based gait parameters' values derived from a large longitudinal cohort study in older adults. We measured gait parameters, such as velocity, step length, time, variability, and asymmetry, from straight, self-paced 20-m walks in older adults (four visits: 715/1102/1017/957 participants) every second year over 6 years using an IMU at the lower back. Moreover, we calculated the associations of gait parameters with sex and age. Women showed lower gait speed, step length, step time, stride time, swing time, and stance time, compared to men. Longitudinal analyses suggest that these parameters are at least partly deteriorating within the assessment period of 2 years, especially in men and at an older age. Variability and asymmetry parameters show a less clear sex- and age-associated pattern. Altogether, our large longitudinal dataset provides the first sex-specific information on which parameters are particularly promising for the detection of age-related gait changes that can be extracted from an IMU on the lower back. This information may be helpful for future observational and treatment studies investigating sex and age-related effects on gait, as well as for studies investigating age-related diseases

    Investigation of autosomal genetic sex differences in Parkinson's disease

    Get PDF
    Objective: Parkinson's disease (PD) is a complex neurodegenerative disorder. Men are on average similar to 1.5 times more likely to develop PD compared to women with European ancestry. Over the years, genomewide association studies (GWAS) have identified numerous genetic risk factors for PD, however, it is unclear whether genetics contribute to disease etiology in a sex-specific manner.Methods: In an effort to study sex-specific genetic factors associated with PD, we explored 2 large genetic datasets from the International Parkinson's Disease Genomics Consortium and the UK Biobank consisting of 13,020 male PD cases, 7,936 paternal proxy cases, 89,660 male controls, 7,947 female PD cases, 5,473 maternal proxy cases, and 90,662 female controls. We performed GWAS meta-analyses to identify distinct patterns of genetic risk contributing to disease in male versus female PD cases.Results: In total, 19 genomewide significant regions were identified and no sex-specific effects were observed. A high genetic correlation between the male and female PD GWAS were identified (rg = 0.877) and heritability estimates were identical between male and female PD cases (similar to 20%).Interpretation: We did not detect any significant genetic differences between male or female PD cases. Our study does not support the notion that common genetic variation on the autosomes could explain the difference in prevalence of PD between males and females cases at least when considering the current sample size under study. Further studies are warranted to investigate the genetic architecture of PD explained by X and Y chromosomes and further evaluate environmental effects that could potentially contribute to PD etiology in male versus female patients.Neurological Motor Disorder

    Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing.

    Get PDF
    BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies

    Gait analysis with wearables predicts conversion to Parkinson disease

    Get PDF
    Objective Quantification of gait with wearable technology is promising; recent cross-sectional studies showed that gait characteristics are potential prodromal markers for Parkinson disease (PD). The aim of this longitudinal prospective observational study was to establish gait impairments and trajectories in the prodromal phase of PD, identifying which gait characteristics are potentially early diagnostic markers of PD. Methods The 696 healthy controls (mean age = 63 ± 7 years) recruited in the Tubingen Evaluation of Risk Factors for Early Detection of Neurodegeneration study were included. Assessments were performed longitudinally 4 times at 2-year intervals, and people who converted to PD were identified. Participants were asked to walk at different speeds under single and dual tasking, with a wearable device placed on the lower back; 14 validated clinically relevant gait characteristics were quantified. Cox regression was used to examine whether gait at first visit could predict time to PD conversion after controlling for age and sex. Random effects linear mixed models (RELMs) were used to establish longitudinal trajectories of gait and model the latency between impaired gait and PD diagnosis. Results Sixteen participants were diagnosed with PD on average 4.5 years after first visit (converters; PDC). Higher step time variability and asymmetry of all gait characteristics were associated with a shorter time to PD diagnosis. RELMs indicated that gait (lower pace) deviates from that of non-PDC approximately 4 years prior to diagnosis. Interpretation Together with other prodromal markers, quantitative gait characteristics can play an important role in identifying prodromal PD and progression within this phase. ANN NEUROL 2019;86:357–36

    Clinical feasibility and validation of the accelerated T2 mapping sequence GRAPPATINI in brain imaging.

    No full text
    To prospectively evaluate feasibility and robustness of an accelerated T2 mapping sequence (GRAPPATINI) in brain imaging and to assess its synthetic T2-weighted images (sT2w) in comparison with a standard T2-weighted sequence (T2 TSE). Volunteers were included to evaluate the robustness and consecutive patients for morphological evaluation. They were scanned on a 3 T MR-scanner. Healthy volunteers underwent GRAPPATINI of the brain three times (day 1: scan/rescan; day 2: follow-up). Patients between the ages of 18 and 85 years who were able to provide written informed consent and who had no MRI contraindications were included. For morphological comparison two radiologists with 5 and 7 years of experience in brain MRI evaluated image quality using a Likert scale (1 being poor, 4 being excellent) in a blinded and randomized fashion. Images were successfully acquired in ten volunteers with a mean age of 25 years (ranging from 22 to 31 years) and 52 patients (23 men/29 women) with a mean age of 55 years (range of 22-83 years). Most brain regions showed repeatable and reproducible T2 values (rescan: CoV 0.75%-2.06%, ICC 69%-92.3%; follow-up: CoV 0.41%-1.59%, ICC 79.4%-95.8%), except for the caudate nucleus (rescan: CoV 7.25%, ICC 66.3%; follow-up: CoV 4.78%, ICC 80.9%). Image quality of sT2w was rated inferior to T2 TSE (median for T2 TSE: 3; sT2w: 1-2), but measurements revealed good interrater reliability of sT2w (lesion counting: ICC 0.85; diameter measure: ICC 0.68 and 0.67). GRAPPATINI is a feasible and robust T2 mapping sequence of the brain on intra- and intersubject level. The resulting sT2w depict brain lesions comparable to T2 TSE despite its inferior image quality
    corecore