108 research outputs found

    Chiral ferrocenyl diphosphines for asymmetric transfer hydrogenation of acetophenone

    Get PDF
    4 pagesInternational audienceThe synthesis of new optically pure ferrocenyl diphosphines have been realized from (R)-(+)-N,N-dimethylaminoethylferrocene. Particularly, dissymmetric ferrocenyl diphosphines have been synthesized. The diphosphines have been used as ligands in asymmetric transfer hydrogenation of acetophenone in the presence of Ru catalysts

    KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing

    No full text
    International audienceIn the cochlea, K þ is essential for mechano-electrical transduction. Here, we explore cochlear structure and function in mice lacking K þ channels of the two-pore domain family. A profound deafness associated with a decrease in endocochlear potential is found in adult Kcnk5 À / À mice. Hearing occurs around postnatal day 19 (P19), and completely disappears 2 days later. At P19, Kcnk5 À / À mice have a normal endolymphatic [K þ ] but a partly lowered endocochlear potential. Using Lac-Z as a gene reporter, KCNK5 is mainly found in outer sulcus Claudius', Boettcher's and root cells. Low levels of expression are also seen in the spiral ganglion, Reissner's membrane and stria vascularis. Essential channels (KCNJ10 and KCNQ1) contributing to K þ secretion in stria vascularis have normal expression in Kcnk5 À / À mice. Thus, KCNK5 channels are indispensable for the maintenance of hearing. Among several plausible mechanisms, we emphasize their role in K þ recycling along the outer sulcus lateral route

    The transcriptomic response of mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin d3 includes genes limiting the progression of neurodegenerative diseases.

    Get PDF
    International audienceSeasonal or chronic vitamin D deficiency and/or insufficiency is highly prevalent in the human population. Receptors for 1,25-dihydroxyvitamin D3, the hormonal metabolite of vitamin D, are found throughout the brain. To provide further information on the role of this hormone on brain function, we analyzed the transcriptomic profiles of mixed neuron-glial cell cultures in response to 1,25-dihydroxyvitamin D3. 1,25-dihydroxyvitamin D3 treatment increases the mRNA levels of 27 genes by at least 1.9 fold. Among them, 17 genes were related to neurodegenerative and psychiatric diseases, or brain morphogenesis. Notably, 10 of these genes encode proteins potentially limiting the progression of Alzheimer's disease. These data provide support for a role of 1,25-dihydroxyvitamin D3 in brain disease prevention. The possible consequences of circannual or chronic vitamin D insufficiencies on a tissue with a low regenerative potential such as the brain should be considered

    Chronic administration of atypical antipsychotics improves behavioral and synaptic defects of STOP null mice.

    Get PDF
    International audienceINTRODUCTION: Recent studies have suggested that schizophrenia is associated with alterations in the synaptic connectivity involving cytoskeletal proteins. The microtubule-associated protein stable tubule only polypeptide (STOP) plays a key role in neuronal architecture and synaptic plasticity, and it has been demonstrated that STOP gene deletion in mice leads to a phenotype mimicking aspects of positive and negative symptoms and cognitive deficits classically observed in schizophrenic patients. In STOP null mice, behavioral defects are associated with synaptic plasticity abnormalities including defects in long-term potentiation. In these mice, long-term administration of typical antipsychotics has been shown to partially alleviate behavioral defects but, as in humans, such a treatment was poorly active on deficits related to negative symptoms and cognitive impairments. Here, we assessed the effects of risperidone and clozapine, two atypical antipsychotics, on STOP null mice behavior and synaptic plasticity. RESULTS: Long-term administration of either drug results in alleviation of behavioral alterations mimicking some negative symptoms and partial amelioration of some cognitive defects in STOP null mice. Interestingly, clozapine treatment also improves synaptic plasticity of the STOP null animals by restoring long-term potentiation in the hippocampus. DISCUSSION: All together, the pharmacological reactivity of STOP null mice to antipsychotics evokes the pharmacological response of humans to such drugs. Totally, our study suggests that STOP null mice may provide a useful preclinical model to evaluate pharmacological properties of antipsychotic drugs

    Manganese Cytotoxicity Assay on Hippocampal Neuronal Cell Culture

    Get PDF
    Compared to an in vivo experiment, neuronal cell cultures are immediately accessibleto observation and manipulation. In this protocol, we describe a technique to evaluate thecytotoxicity of a metal, manganese (Mn2+), on hippocampal neuronal cell cultures. Interestingly, this protocol is easily adaptable to any type of primary culture (e.g., cortical neurons) and any type of toxic compound (e.g., chemical product).Fil: Daoust, Alexia. Inserm; Francia. Universite Joseph Fourier; FranciaFil: Saoudi, Yasmina. Inserm; Francia. Universite Joseph Fourier; FranciaFil: Brocard, Jacques. Inserm; Francia. Universite Joseph Fourier; FranciaFil: Collomb, Nora. Inserm; Francia. Universite Joseph Fourier; FranciaFil: Batandier, Cecile. Laboratoire de Bioénergétique Fondamentale et Appliquée; FranciaFil: Bisbal, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina. Inserm; Francia. Universite Joseph Fourier; FranciaFil: Salome, Murielle. European Synchrotron Radiation Facility; FranciaFil: Andrieux, Annie. Inserm; Francia. Universite Joseph Fourier; FranciaFil: Bohic, Sylvain. Inserm; Francia. Universite Joseph Fourier; Francia. European Synchrotron Radiation Facility; FranciaFil: Barbier, Emmanuel. Inserm; Francia. Universite Joseph Fourier; Franci

    Phosphorylation of microtubule-associated protein STOP by calmodulin kinase II.: Phosphorylation of STOP by CaMKII

    Get PDF
    International audienceSTOP proteins are microtubule-associated, calmodulin-regulated proteins responsible for the high degree of stabilization displayed by neuronal microtubules. STOP suppression in mice induces synaptic defects affecting both short and long term synaptic plasticity in hippocampal neurons. Interestingly, STOP has been identified as a component of synaptic structures in neurons, despite the absence of microtubules in nerve terminals, indicating the existence of mechanisms able to induce a translocation of STOP from microtubules to synaptic compartments. Here we have tested STOP phosphorylation as a candidate mechanism for STOP relocalization. We show that, both in vitro and in vivo, STOP is phosphorylated by the multifunctional enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), which is a key enzyme for synaptic plasticity. This phosphorylation occurs on at least two independent sites. Phosphorylated forms of STOP do not bind microtubules in vitro and do not co-localize with microtubules in cultured differentiating neurons. Instead, phosphorylated STOP co-localizes with actin assemblies along neurites or at branching points. Correlatively, we find that STOP binds to actin in vitro. Finally, in differentiated neurons, phosphorylated STOP co-localizes with clusters of synaptic proteins, whereas unphosphorylated STOP does not. Thus, STOP phosphorylation by CaMKII may promote STOP translocation from microtubules to synaptic compartments where it may interact with actin, which could be important for STOP function in synaptic plasticity

    Motor-dependent microtubule disassembly driven by tubulin tyrosination

    Get PDF
    In cells, stable microtubules (MTs) are covalently modified by a carboxypeptidase, which removes the C-terminal Tyr residue of α-tubulin. The significance of this selective detyrosination of MTs is not understood. In this study, we report that tubulin detyrosination in fibroblasts inhibits MT disassembly. This inhibition is relieved by overexpression of the depolymerizing motor mitotic centromere-associated kinesin (MCAK). Conversely, suppression of MCAK expression prevents disassembly of normal tyrosinated MTs in fibroblasts. Detyrosination of MTs suppresses the activity of MCAK in vitro, apparently as the result of a decreased affinity of the adenosine diphosphate (ADP)–inorganic phosphate- and ADP-bound forms of MCAK for the MT lattice. Detyrosination also impairs MT disassembly in neurons and inhibits the activity of the neuronal depolymerizing motor KIF2A in vitro. These results indicate that MT depolymerizing motors are directly inhibited by the detyrosination of tubulin, resulting in the stabilization of cellular MTs. Detyrosination of transiently stabilized MTs may give rise to persistent subpopulations of disassembly-resistant polymers to sustain subcellular cytoskeletal differentiation

    Tubulin tyrosination regulates synaptic function and is disrupted in Alzheimer's disease

    Get PDF
    : Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions which go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase. Here we show that tubulin tyrosine ligase hemizygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density, and both synaptic plasticity and memory deficits. We further report decreased tubulin tyrosine ligase expression in sporadic and familial Alzheimer's disease, and reduced microtubule dynamics in human neurons harboring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid β peptide toxicity and that expression of tubulin tyrosine ligase, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid β peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid β peptide-induced synaptic damage, and that this balance is lost in Alzheimer's disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer's disease

    Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions

    Get PDF
    Lipid droplets (LDs) are cell compartments specialized for oil storage. Although their role and biogenesis are relatively well documented in seeds, little is known about their composition, structure and function in senescing leaves where they also accumulate. Here, we used a label free quantitative mass spectrometry approach to define the LD proteome of aging Arabidopsis leaves. We found that its composition is highly different from that of seed/cotyledon and identified 28 proteins including 9 enzymes of the secondary metabolism pathways involved in plant defense response. With the exception of the TRIGALACTOSYLDIACYLGLYCEROL2 protein, we did not identify enzymes implicated in lipid metabolism, suggesting that growth of leaf LDs does not occur by local lipid synthesis but rather through contact sites with the endoplasmic reticulum (ER) or other membranes. The two most abundant proteins of the leaf LDs are the CALEOSIN3 and the SMALL RUBBER PARTICLE1 (AtSRP1); both proteins have structural functions and participate in plant response to stress. CALEOSIN3 and AtSRP1 are part of larger protein families, yet no other members were enriched in the LD proteome suggesting a specific role of both proteins in aging leaves. We thus examined the function of AtSRP1 at this developmental stage and found that AtSRP1 modulates the expression of CALEOSIN3 in aging leaves. Furthermore, AtSRP1 overexpression induces the accumulation of triacylglycerol with an unusual composition compared to wild-type. We demonstrate that, although AtSRP1 expression is naturally increased in wild type senescing leaves, its overexpression in senescent transgenic lines induces an over-accumulation of LDs organized in clusters at restricted sites of the ER. Conversely, atsrp1 knock-down mutants displayed fewer but larger LDs. Together our results reveal that the abundancy of AtSRP1 regulates the neo-formation of LDs during senescence. Using electron tomography, we further provide evidence that LDs in leaves share tenuous physical continuity as well as numerous contact sites with the ER membrane. Thus, our data suggest that leaf LDs are functionally distinct from seed LDs and that their biogenesis is strictly controlled by AtSRP1 at restricted sites of the ER
    • …
    corecore