855 research outputs found
Some exact results for the velocity of cracks propagating in non-linear elastic models
We analyze a piece-wise linear elastic model for the propagation of a crack
in a stripe geometry under mode III conditions, in the absence of dissipation.
The model is continuous in the propagation direction and discrete in the
perpendicular direction. The velocity of the crack is a function of the value
of the applied strain. We find analytically the value of the propagation
velocity close to the Griffith threshold, and close to the strain of uniform
breakdown. Contrary to the case of perfectly harmonic behavior up to the
fracture point, in the piece-wise linear elastic model the crack velocity is
lower than the sound velocity, reaching this limiting value at the strain of
uniform breakdown. We complement the analytical results with numerical
simulations and find excellent agreement.Comment: 9 pages, 13 figure
Frictional sliding without geometrical reflection symmetry
The dynamics of frictional interfaces play an important role in many physical
systems spanning a broad range of scales. It is well-known that frictional
interfaces separating two dissimilar materials couple interfacial slip and
normal stress variations, a coupling that has major implications on their
stability, failure mechanism and rupture directionality. In contrast,
interfaces separating identical materials are traditionally assumed not to
feature such a coupling due to symmetry considerations. We show, combining
theory and experiments, that interfaces which separate bodies made of
macroscopically identical materials, but lack geometrical reflection symmetry,
generically feature such a coupling. We discuss two applications of this novel
feature. First, we show that it accounts for a distinct, and previously
unexplained, experimentally observed weakening effect in frictional cracks.
Second, we demonstrate that it can destabilize frictional sliding which is
otherwise stable. The emerging framework is expected to find applications in a
broad range of systems.Comment: 14 pages, 5 figures + Supplementary Material. Minor change in the
title, extended analysis in the second par
Supersonic crack propagation in a class of lattice models of Mode III brittle fracture
We study a lattice model for mode III crack propagation in brittle materials
in a stripe geometry at constant applied stretching. Stiffening of the material
at large deformation produces supersonic crack propagation. For large
stretching the propagation is guided by well developed soliton waves. For low
stretching, the crack-tip velocity has a universal dependence on stretching
that can be obtained using a simple geometrical argument.Comment: 4 pages, 3 figure
Velocity Fluctuations in Dynamical Fracture: the Role of Microcracks
We address the velocity fluctuations of fastly moving cracks in stressed
materials. One possible mechanism for such fluctuations is the interaction of
the main crack with micro cracks (irrespective whether these are existing
material defects or they form during the crack evolution). We analyze carefully
the dynamics (in 2 space dimensions) of one macro and one micro crack, and
demonstrate that their interaction results in a {\em large} and {\em rapid}
velocity fluctuation, in qualitative correspondence with typical velocity
fluctuations observed in experiments. In developing the theory of the dynamical
interaction we invoke an approximation that affords a reduction in mathematical
complexity to a simple set of ordinary differential equations for the positions
of the cracks tips; we propose that this kind of approximation has a range of
usefulness that exceeds the present context.Comment: 7 pages, 7 figure
Proportions of polyunsaturated fatty acids in umbilical cord blood at birth are related to atopic eczema development in the first year of life
Atopic eczema, the most common atopic disease in infants, may pave the way for sensitization and allergy later in childhood. Fatty acids have immune-regulating properties and may regulate skin permeability. Here we examine whether the proportions of fatty acids among the infant and maternal plasma phospholipids at birth were associated with maternal dietary intake during pregnancy and development of atopic eczema during the first year of age in the Nutritional impact on Immunological maturation during Childhood in relation to the Environment (NICE) birth cohort. Dietary data were collected with a semi-quantitative food frequency questionnaire, fatty acids were measured with GC-MS and atopic eczema was diagnosed by a pediatric allergologist at 12 months of age. We found that higher proportions of n-6 PUFAs (including arachidonic acid) but lower proportions of n-3 PUFAs (including DPA) in the infant’s phospholipids at birth were associated with an increased risk of atopic eczema at 12 months of age. The n-6 and n-3 PUFAs were related to maternal intake of meat and fish, respectively. Our results suggest that prenatal exposure to unsaturated fatty acids is associated with eczema development in the infant. Maternal diet during pregnancy may partly explain the fatty acid profiles in utero
A Serendipitous Mutation Reveals the Severe Virulence Defect of a Klebsiella pneumoniae fepB Mutant
ABSTRACT Klebsiella pneumoniae is considered a significant public health threat because of the emergence of multidrug-resistant strains and the challenge associated with treating life-threatening infections. Capsule, siderophores, and adhesins have been implicated as virulence determinants of K. pneumoniae , yet we lack a clear understanding of how this pathogen causes disease. In a previous screen for virulence genes, we identified a potential new virulence locus and constructed a mutant ( smr ) with this locus deleted. In this study, we characterize the smr mutant and show that this mutation renders K. pneumoniae avirulent in a pneumonia model of infection. The smr mutant was expected to have a deletion of three genes, but subsequent genome sequencing indicated that a much larger deletion had occurred. Further analysis of the deleted region indicated that the virulence defect of the smr mutant could be attributed to the loss of FepB, a periplasmic protein required for import of the siderophore enterobactin. Interestingly, a Δ fepB mutant was more attenuated than a mutant unable to synthesize enterobactin, suggesting that additional processes are affected. As FepB is highly conserved among the members of the family Enterobacteriaceae , therapeutic targeting of FepB may be useful for the treatment of Klebsiella and other bacterial infections. IMPORTANCE In addition to having a reputation as the causative agent of several types of hospital-acquired infections, Klebsiella pneumoniae has gained widespread attention as a pathogen with a propensity for acquiring antibiotic resistance. It is capable of causing a range of infections, including urinary tract infections, pneumonia, and sepsis. Because of the rapid emergence of carbapenem resistance among Klebsiella strains, there is a dire need for a better understanding of virulence mechanisms and identification of new drug targets. Here, we identify the periplasmic transporter FepB as one such potential target
Crack growth by surface diffusion in viscoelastic media
We discuss steady state crack growth in the spirit of a free boundary
problem. It turns out that mode I and mode III situations are very different
from each other: In particular, mode III exhibits a pronounced transition
towards unstable crack growth at higher driving forces, and the behavior close
to the Griffith point is determined entirely through crack surface dissipation,
whereas in mode I the fracture energy is renormalized due to a remaining finite
viscous dissipation. Intermediate mixed-mode scenarios allow steady state crack
growth with higher velocities, leading to the conjecture that mode I cracks can
be unstable with respect to a rotation of the crack front line
Start of the 2014/15 influenza season in Europe: drifted influenza A(H3N2) viruses circulate as dominant subtype
Members of the WHO European Region and European Influenza Surveillance Network: Portugal: Raquel Guiomar, Pedro Pechirra, Paula Cristovão, Inês Costa, Baltazar Nunes, Ana Rodrigues.The influenza season 2014/15 started in Europe in week 50 2014 with influenza A(H3N2) viruses predominating. The majority of the A(H3N2) viruses characterised antigenically and/or genetically differ from the northern hemisphere vaccine component which may result in reduced vaccine effectiveness for the season. We therefore anticipate that this season may be more severe than the 2013/14 season. Treating influenza with antivirals in addition to prevention with vaccination will be important
Theory of dynamic crack branching in brittle materials
The problem of dynamic symmetric branching of an initial single brittle crack
propagating at a given speed under plane loading conditions is studied within a
continuum mechanics approach. Griffith's energy criterion and the principle of
local symmetry are used to determine the cracks paths. The bifurcation is
predicted at a given critical speed and at a specific branching angle: both
correlated very well with experiments. The curvature of the subsequent branches
is also studied: the sign of , with being the non singular stress at the
initial crack tip, separates branches paths that diverge from or converge to
the initial path, a feature that may be tested in future experiments. The model
rests on a scenario of crack branching with some reasonable assumptions based
on general considerations and in exact dynamic results for anti-plane
branching. It is argued that it is possible to use a static analysis of the
crack bifurcation for plane loading as a good approximation to the dynamical
case. The results are interesting since they explain within a continuum
mechanics approach the main features of the branching instabilities of fast
cracks in brittle materials, i.e. critical speeds, branching angle and the
geometry of subsequent branches paths.Comment: 41 pages, 15 figures. Accepted to International Journal of Fractur
- …