855 research outputs found

    Some exact results for the velocity of cracks propagating in non-linear elastic models

    Full text link
    We analyze a piece-wise linear elastic model for the propagation of a crack in a stripe geometry under mode III conditions, in the absence of dissipation. The model is continuous in the propagation direction and discrete in the perpendicular direction. The velocity of the crack is a function of the value of the applied strain. We find analytically the value of the propagation velocity close to the Griffith threshold, and close to the strain of uniform breakdown. Contrary to the case of perfectly harmonic behavior up to the fracture point, in the piece-wise linear elastic model the crack velocity is lower than the sound velocity, reaching this limiting value at the strain of uniform breakdown. We complement the analytical results with numerical simulations and find excellent agreement.Comment: 9 pages, 13 figure

    Frictional sliding without geometrical reflection symmetry

    Get PDF
    The dynamics of frictional interfaces play an important role in many physical systems spanning a broad range of scales. It is well-known that frictional interfaces separating two dissimilar materials couple interfacial slip and normal stress variations, a coupling that has major implications on their stability, failure mechanism and rupture directionality. In contrast, interfaces separating identical materials are traditionally assumed not to feature such a coupling due to symmetry considerations. We show, combining theory and experiments, that interfaces which separate bodies made of macroscopically identical materials, but lack geometrical reflection symmetry, generically feature such a coupling. We discuss two applications of this novel feature. First, we show that it accounts for a distinct, and previously unexplained, experimentally observed weakening effect in frictional cracks. Second, we demonstrate that it can destabilize frictional sliding which is otherwise stable. The emerging framework is expected to find applications in a broad range of systems.Comment: 14 pages, 5 figures + Supplementary Material. Minor change in the title, extended analysis in the second par

    Supersonic crack propagation in a class of lattice models of Mode III brittle fracture

    Full text link
    We study a lattice model for mode III crack propagation in brittle materials in a stripe geometry at constant applied stretching. Stiffening of the material at large deformation produces supersonic crack propagation. For large stretching the propagation is guided by well developed soliton waves. For low stretching, the crack-tip velocity has a universal dependence on stretching that can be obtained using a simple geometrical argument.Comment: 4 pages, 3 figure

    Velocity Fluctuations in Dynamical Fracture: the Role of Microcracks

    Full text link
    We address the velocity fluctuations of fastly moving cracks in stressed materials. One possible mechanism for such fluctuations is the interaction of the main crack with micro cracks (irrespective whether these are existing material defects or they form during the crack evolution). We analyze carefully the dynamics (in 2 space dimensions) of one macro and one micro crack, and demonstrate that their interaction results in a {\em large} and {\em rapid} velocity fluctuation, in qualitative correspondence with typical velocity fluctuations observed in experiments. In developing the theory of the dynamical interaction we invoke an approximation that affords a reduction in mathematical complexity to a simple set of ordinary differential equations for the positions of the cracks tips; we propose that this kind of approximation has a range of usefulness that exceeds the present context.Comment: 7 pages, 7 figure

    Proportions of polyunsaturated fatty acids in umbilical cord blood at birth are related to atopic eczema development in the first year of life

    Get PDF
    Atopic eczema, the most common atopic disease in infants, may pave the way for sensitization and allergy later in childhood. Fatty acids have immune-regulating properties and may regulate skin permeability. Here we examine whether the proportions of fatty acids among the infant and maternal plasma phospholipids at birth were associated with maternal dietary intake during pregnancy and development of atopic eczema during the first year of age in the Nutritional impact on Immunological maturation during Childhood in relation to the Environment (NICE) birth cohort. Dietary data were collected with a semi-quantitative food frequency questionnaire, fatty acids were measured with GC-MS and atopic eczema was diagnosed by a pediatric allergologist at 12 months of age. We found that higher proportions of n-6 PUFAs (including arachidonic acid) but lower proportions of n-3 PUFAs (including DPA) in the infant’s phospholipids at birth were associated with an increased risk of atopic eczema at 12 months of age. The n-6 and n-3 PUFAs were related to maternal intake of meat and fish, respectively. Our results suggest that prenatal exposure to unsaturated fatty acids is associated with eczema development in the infant. Maternal diet during pregnancy may partly explain the fatty acid profiles in utero

    A Serendipitous Mutation Reveals the Severe Virulence Defect of a Klebsiella pneumoniae fepB Mutant

    Get PDF
    ABSTRACT Klebsiella pneumoniae is considered a significant public health threat because of the emergence of multidrug-resistant strains and the challenge associated with treating life-threatening infections. Capsule, siderophores, and adhesins have been implicated as virulence determinants of K. pneumoniae , yet we lack a clear understanding of how this pathogen causes disease. In a previous screen for virulence genes, we identified a potential new virulence locus and constructed a mutant ( smr ) with this locus deleted. In this study, we characterize the smr mutant and show that this mutation renders K. pneumoniae avirulent in a pneumonia model of infection. The smr mutant was expected to have a deletion of three genes, but subsequent genome sequencing indicated that a much larger deletion had occurred. Further analysis of the deleted region indicated that the virulence defect of the smr mutant could be attributed to the loss of FepB, a periplasmic protein required for import of the siderophore enterobactin. Interestingly, a Δ fepB mutant was more attenuated than a mutant unable to synthesize enterobactin, suggesting that additional processes are affected. As FepB is highly conserved among the members of the family Enterobacteriaceae , therapeutic targeting of FepB may be useful for the treatment of Klebsiella and other bacterial infections. IMPORTANCE In addition to having a reputation as the causative agent of several types of hospital-acquired infections, Klebsiella pneumoniae has gained widespread attention as a pathogen with a propensity for acquiring antibiotic resistance. It is capable of causing a range of infections, including urinary tract infections, pneumonia, and sepsis. Because of the rapid emergence of carbapenem resistance among Klebsiella strains, there is a dire need for a better understanding of virulence mechanisms and identification of new drug targets. Here, we identify the periplasmic transporter FepB as one such potential target

    Crack growth by surface diffusion in viscoelastic media

    Get PDF
    We discuss steady state crack growth in the spirit of a free boundary problem. It turns out that mode I and mode III situations are very different from each other: In particular, mode III exhibits a pronounced transition towards unstable crack growth at higher driving forces, and the behavior close to the Griffith point is determined entirely through crack surface dissipation, whereas in mode I the fracture energy is renormalized due to a remaining finite viscous dissipation. Intermediate mixed-mode scenarios allow steady state crack growth with higher velocities, leading to the conjecture that mode I cracks can be unstable with respect to a rotation of the crack front line

    Start of the 2014/15 influenza season in Europe: drifted influenza A(H3N2) viruses circulate as dominant subtype

    Get PDF
    Members of the WHO European Region and European Influenza Surveillance Network: Portugal: Raquel Guiomar, Pedro Pechirra, Paula Cristovão, Inês Costa, Baltazar Nunes, Ana Rodrigues.The influenza season 2014/15 started in Europe in week 50 2014 with influenza A(H3N2) viruses predominating. The majority of the A(H3N2) viruses characterised antigenically and/or genetically differ from the northern hemisphere vaccine component which may result in reduced vaccine effectiveness for the season. We therefore anticipate that this season may be more severe than the 2013/14 season. Treating influenza with antivirals in addition to prevention with vaccination will be important

    Theory of dynamic crack branching in brittle materials

    Full text link
    The problem of dynamic symmetric branching of an initial single brittle crack propagating at a given speed under plane loading conditions is studied within a continuum mechanics approach. Griffith's energy criterion and the principle of local symmetry are used to determine the cracks paths. The bifurcation is predicted at a given critical speed and at a specific branching angle: both correlated very well with experiments. The curvature of the subsequent branches is also studied: the sign of TT, with TT being the non singular stress at the initial crack tip, separates branches paths that diverge from or converge to the initial path, a feature that may be tested in future experiments. The model rests on a scenario of crack branching with some reasonable assumptions based on general considerations and in exact dynamic results for anti-plane branching. It is argued that it is possible to use a static analysis of the crack bifurcation for plane loading as a good approximation to the dynamical case. The results are interesting since they explain within a continuum mechanics approach the main features of the branching instabilities of fast cracks in brittle materials, i.e. critical speeds, branching angle and the geometry of subsequent branches paths.Comment: 41 pages, 15 figures. Accepted to International Journal of Fractur
    corecore