330 research outputs found

    Spatial mapping of band bending in semiconductor devices using in-situ quantum sensors

    Get PDF
    Band bending is a central concept in solid-state physics that arises from local variations in charge distribution especially near semiconductor interfaces and surfaces. Its precision measurement is vital in a variety of contexts from the optimisation of field effect transistors to the engineering of qubit devices with enhanced stability and coherence. Existing methods are surface sensitive and are unable to probe band bending at depth from surface or bulk charges related to crystal defects. Here we propose an in-situ method for probing band bending in a semiconductor device by imaging an array of atomic-sized quantum sensing defects to report on the local electric field. We implement the concept using the nitrogen-vacancy centre in diamond, and map the electric field at different depths under various surface terminations. We then fabricate a two-terminal device based on the conductive two-dimensional hole gas formed at a hydrogen-terminated diamond surface, and observe an unexpected spatial modulation of the electric field attributed to a complex interplay between charge injection and photo-ionisation effects. Our method opens the way to three-dimensional mapping of band bending in diamond and other semiconductors hosting suitable quantum sensors, combined with simultaneous imaging of charge transport in complex operating devices.Comment: This is a pre-print of an article published in Nature Electronics. The final authenticated version is available online at https://dx.doi.org/10.1038/s41928-018-0130-

    Nuclear Cryogenic Propulsion Stage

    Get PDF
    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP

    Bendable X-ray Optics for High Resolution Imaging

    Get PDF
    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments

    Nuclear Cryogenic Propulsion Stage for Mars Exploration

    Get PDF
    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP)

    Post-Traumatic Stress Disorder and Risk of Degenerative Synucleinopathies: Systematic Review and Meta-Analysis.

    Get PDF
    OBJECTIVE: A systematic review was conducted to answer whether adult-onset post-traumatic stress disorder (PTSD) is associated with increased risk of Parkinson\u27s disease (PD) and related synucleinopathies. DESIGN: A systematic search of Medline (Ovid), Embase (Elsevier), PsycInfo (Ovid), Cochrane Library (Wiley), and Web of Science (Clarivate) was performed using MeSH headings and equivalent terms for PTSD, PD, DLB, and related disorders. SETTING: No restrictions. PARTICIPANTS: Eligible articles were published in peer-reviewed journals, sampled adult human populations, and treated PTSD and degenerative synucleinopathies as exposures and outcomes, respectively. MEASUREMENTS: Extracted data included diagnostic methods, sample characteristics, matching procedures, covariates, and effect estimates. Bias assessment was performed with the Newcastle-Ottawa scale. Hazard ratios were pooled using the random effects model, and the Hartung-Knapp adjustment was applied due to the small number of studies. RESULTS: A total of six articles comprising seven unique samples (total n = 1,747,378) met eligibility criteria. The risk of PD was reported in three retrospective cohort studies and one case-control study. Risk of DLB was reported in one retrospective cohort, one case-control, and one prospective cohort study. No studies addressed potential relationships with multiple system atrophy or pure autonomic failure. Meta-analysis of hazard ratios from four retrospective cohort studies supported the hypothesis that incident PTSD was associated with PD and DLB risk (pooled HR 1.88, 95% C.I. 1.08-3.24; p = 0.035). CONCLUSIONS: The sparse literature to-date supports further investigations on the association of mid- to late-life PTSD with Parkinson\u27s and related neurodegenerative disorders

    Effect of Citrus Byproducts on Survival of O157:H7 and Non-O157 \u3ci\u3eEscherichia coli\u3c/i\u3e Serogroups within \u3ci\u3eIn Vitro\u3c/i\u3e Bovine Ruminal Microbial Fermentations

    Get PDF
    Citrus byproducts (CBPs) are utilized as a low cost nutritional supplement to the diets of cattle and have been suggested to inhibit the growth of both Escherichia coli O157:H7 and Salmonella. The objective of this study was to examine the effects in vitro that varying concentrations of CBP in the powdered or pelleted variety have on the survival of Shiga-toxin Escherichia coli (STEC) serotypes O26:H11, O103:H8, O111:H8, O145:H28, and O157:H7 in bovine ruminal microorganism media. The O26:H11, O111:H8, O145:H28, and O157:H7 serotypes did not exhibit a change in populations in media supplemented with CBP with either variety. The O103:H8 serotype displayed a general trend for an approximate 1 log10 reduction in 5% powdered CBP and 20% pelleted CBP over 6 h. There was a trend for reductions in populations of a variant form of O157:H7 mutated in the stx1 and stx2 genes in higher concentrations of CBP. These results suggest that variations exist in the survival of these serotypes of STEC within mixed ruminal microorganism fluid media when supplemented with CBP. Further research is needed to determine why CBPs affect STEC serotypes differently

    Hydrostatic pressure does not cause detectable changes to survival of human retinal ganglion

    Get PDF
    Purpose: Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. Methods: A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (<24h post mortem) were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD). Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1) and RGC number by immunohistochemistry (NeuN). Activated p38 and JNK were detected by Western blot. Results: Exposure of HORCs to constant (60mmHg) or fluctuating (10-100mmHg; 1 cycle/min) pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD. Conclusions: Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina

    A Common Glaucoma-risk Variant of SIX6 Alters Retinal Nerve Fiber Layer and Optic Disc Measures in a European Population: The EPIC-Norfolk Eye Study

    Get PDF
    PURPOSE: A common missense variant in the SIX6 gene (rs33912345) is strongly associated with primary open-angle glaucoma (POAG). We aimed to examine the association of rs33912345 with optic disc and retinal nerve fiber layer (RNFL) measures in a European population. METHODS: We examined participants of the population-based EPIC-Norfolk Eye Study. Participants underwent confocal laser scanning tomography (Heidelberg Retina Tomograph II, HRT) to estimate optic disc rim area and vertical cup-disc ratio (VCDR). Scanning laser polarimetry (GDxVCC) was used to estimate average RNFL thickness. The mean of right and left eye values was considered for each participant. Genotyping was performed using the Affymetrix UK Biobank Axiom Array. Multivariable linear regression with the optic nerve head parameter as outcome variable and dosage of rs33912345 genotype as primary explanatory variable was used, adjusted for age, sex, disc area, axial length and intraocular pressure. We further repeated analyses stratified into age tertiles. RESULTS: In total, 5433 participants with HRT data and 3699 participants with GDxVCC data were included. Each "C" allele of rs33912345 was associated with a smaller rim area (-0.030▒mm [95% CI -0.040, -0.020], P=5.4×10), a larger VCDR (0.025 [95% CI 0.017, 0.033], P=3.3×10) and a thinner RNFL (-0.39▒μm [95% CI -0.62, -0.15], P=0.001). The RNFL association was strongest in the oldest age tertile, whereas rim area and VCDR associations were strongest in the youngest and oldest age tertiles. CONCLUSIONS: The protein coding SIX6 variant rs33912345, previously associated with POAG, has a functional effect on glaucoma-associated optic nerve head traits in Europeans
    • …
    corecore