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Talk Outline
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• Thin film stress measurement:

• Ex-situ example

• In-situ

• Example: Stress behavior in polycrystalline materials during film growth

• Current optical methods of in-situ measurement

• Limitations, sensitivity

• New method of in-situ stress measurement using fiber optic 

displacement sensor

• Two embodiments: circular, cantilever-substrate

• Sensitivity

• Repeatability performance

• Device validation

• Effect of material interfaces on film stress: Ir/B4C, Ir/Si, Mo/Si, Mo/B4C,…

• Multilayers to compensate stress in x-ray optical coatings?

• W/Si example



Current methods of optical in-situ thin film stress measurement:
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Multi-beam stress sensor (MOSS):

Micro cantilever:

Minimum detectable stress Δσhf:

• Ranges from 0.005-0.050 N/m depending on 

method and substrate ( i.e. geometry and mechanical 

properties)

• MOSS is 50 MPa*nm for 100 µm thick silicon substrate

Draw backs with current optical methods:

• Requires external optical access to the substrate

through angled viewports

• Limited to specific deposition geometries

• Complex

• Requires the use of opaque substrates such as

crystalline silicon.

• Film side is measured which can result in destructive 

interference effects when measuring transparent films.

These methods determine the substrate curvature by various 

optical means from which the integrated stress is calculated 

from the Stoney Eqn.:

𝜎ℎ𝑓 =
𝐸𝑠ℎ𝑠

2

6 1 − 𝜈𝑠
𝜅



Stress evolution in polycrystalline films
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Depends on:

Substrate temperature

Argon pressure

Mass of sputtered atoms

Substrate bias

Surface energy
Nucleation & island growth

Island coalescence

Low surface roughness
Surface roughness 

increases with

film thickness

Volmer-Weber Growth Mode



Ex-situ measurement of thin film stress

𝑆𝑡𝑜𝑛𝑒𝑦′𝑠 𝐸𝑞𝑛: 𝜎ℎ𝑓 =
𝐸𝑠ℎ𝑠

2

6 1 − 𝜗𝑠
𝜅

 ≈
𝑑2𝑤

𝑑2𝑥
= 𝑐𝑜𝑛𝑠𝑡

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑒:

𝐴 = 𝜎ℎ𝑓
𝐷𝑠
2

ℎ𝑠
3

0 deg
90 deg

x=0.0212 and y=0.0214 m-1

Tallysurf stylus profilometer

Si <111>



New approach to in-situ stress measurement
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New approach to in-situ stress measurement:

• Utilizes a high resolution (i.e. 5nm) vacuum 

compatible fiber optic displacement sensor.

• Curvature determined from out-of-plane 

displacement measurement of the substrate.

• Uses double-side polished substrate.

• Same arrangement can be used for thermal annealing.

• Glass substrates can be utilized.

• Easily implemented into existing deposition systems.

• Very sensitive method.

𝜎ℎ𝑓 =
4

3

𝐸𝑠
1 − 𝜈𝑠

ℎ𝑠
𝐷𝑠

2

𝛿

Stoney Eqn. for cantilever:

Stoney Eqn. for circular substrate:

𝜎ℎ𝑓 =
𝐸𝑠ℎ𝑠

2𝛿

3 1 − 𝜈𝑠 𝐿2

Ongoing work:

• Adapting to rotating substrates

• Adapting to curved (i.e. segmented) substrates

D.M. Broadway, U.S. Patent 9,601,391 (Granted March 2017).

D.M. Broadway, U.S. Patent Application 15/425,740 (Filed February 2017).

Pending publication in Review of Scientific Instruments

Method 1: Method 2:



Minimum detectable integrated stress, ∆ 𝜎ℎ𝑓
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∆ 𝜎ℎ𝑓 =
4

3

𝐸𝑠
1 − 𝜈𝑠

ℎ𝑠
𝐷𝑠

2

∆𝛿 ∆ 𝜎ℎ𝑓 =
𝐸𝑠ℎ𝑠

2∆𝛿

3 1 − 𝜈𝑠 𝐿2

• The minimum detectable stress is limited by the combined ambient vibrational background of the substrate 

and electronic noise of the displacement sensor.

• The sensitivity further depends on the mechanical and geometric properties of the substrate.

• The cantilever approach is more sensitive to a given integrated stress but is also more sensitive to 

vibrational noise—compensating effect.

• The cantilever approach is advantageous because it is flexible in its orientation and easily adapted to 

various deposition geometries.

15 MPa*nm 9 MPa*nm

Sensitive enough to measure stress in x-ray multilayers
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Refined in-situ stress sensor (Testing Underway)



Device performance
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In-situ stress of single layer thin films
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Calibration masses placed on cantilever 

tip used to validate substrate modulus 

and linear range of the sensor:

Type IType II

Ts~27-30oC, 2.5 mTorr Ar

100µm thick Schott D263 
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Results are consistent with D.W. Hoffman, Internal stress of 

sputtered Chromium, Thin Solid Films, 40 (1977) 355-363

𝑑 𝜎ℎ𝑓

𝑑ℎ𝑓
= −

𝐸𝑠
3𝜉 1 − 𝜗𝑠

ℎ𝑠
𝑟

2
𝑑𝛿

𝑑𝑡

Stress reversal in polycrystalline films (circular substrate)

Instantaneous stress:

• Efficient for parametrizing the stress

• Independent of film thickness in the 

steady-state regime of film growth

• Substrate in thermal equilibrium

• State of stress ( i.e. tensile or compressive) at low 

pressure is strongly influenced by substrate 

temperature for low density metals like chromium.

• Therefore, the state of stress will depend on the heat 

transfer mechanisms of the substrate (i.e. how it is mounted)

for a given deposition system.

Ts~70oC



Sensitivity at the transition pressure (circular substrate)

Stress reversal in Cr with argon pressure

has been measured with the instrument.

Consistent with the previous work of 

Hoffman (i.e. stress reversal).

Measurement sensitivity is better 

than resolution in the control of 

Argon pressure.

1.62 mTorr
1.60 mTorr



8/16/2017 D. Broadway NASA MSFC 13

t, sec.

0 20 40 60 80

, 
m

0

5

10

15

20

25

Mo on D263

Mo on B4C

t, sec.

0 20 40 60 80

, 
m

m

-20

-15

-10

-5

0

B4C on Mo

Effect of material interfaces on the film stress (Mo-based)
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Effect of material interfaces on the film stress (Ir-based)
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Effect of material interfaces on the film stress (W, Cr-based)
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In-situ stress in W/Si multilayers
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Ts~30oC

Schott D263
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Multilayers to compensate integrated stress
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• Currently single layer films (i.e. Cr) with tensile stress are used as one technique to compensate the 

integrated stress in x-ray optical coatings to near-zero:

• The columnar microstructure of metal films in tension results in increasing surface roughness as the film 

thickness increases—thereby limiting the method’s applicability.

• The increased surface roughness can severely degrade the optical coating’s performance; particularly for 

high energy broadband multilayers.

• Multilayers interrupt the columnar growth so roughness doesn’t increase with film thickness (for Glass & Si)

𝜎ℎ𝑓 𝑁𝑒𝑡
= 𝜎𝐴ℎ𝐴 + 𝜎𝐵ℎ𝐵+ 𝜎ℎ 𝐶𝑇𝐸≈ 0

𝜎𝐴ℎ𝐴 > 0

𝜎𝐵ℎ𝐵 < 0

𝜎𝐶ℎ𝐶 < 0

Stress compensating ML: Cr/B4C, Mo/B4C, …

Future work:

• Influence of substrate temperature and 

deposition rate.

• Impact to total deposition time.

• Optimization of layer thicknesses.

• Surface roughness characterization.

• Addition of N to B4C based ML’s to 

increase dep. rate and smooth 

interfaces.

Cr

Ir

B4C

Example:



Conclusions

• We have introduced a novel method for the in-situ measurement of film stress using a 
fiber optic displacement sensor. 

• The device is less complex than other current optical methods and easily 
implemented into an existing deposition system.

• The device’s sensitivity is 0.009 N/m (9 MPa*nm) for a 100 µm thick glass substrate.

• This sensitivity is capable of detecting changes in stress due to small changes in 
deposition parameters such as argon process pressure (i.e. ±0.02 mTorr).

• The sensitivity can easily detect changes in the integrated stress in the individual 
layers of multilayer films of sub-nanometer thickness.

• The in-situ stress measured with the device is in good qualitative agreement with the 
known behavior of metals films (i.e. stress reversal, Volmer-Weber growth).

• We presented the influence of the material interfaces on the evolution of the film 
stress for several material pairs including: Mo/Si, Mo/B4C, W/Si, Ir/B4C,…

• We have proposed a new stress compensating method that utilizes multilayers

– This method might be applicable to balance the stress in broadband multilayer that are more 
than a micron in total thickness.

– More investigation is needed to study the impact to the total deposition time through 
optimization of the layer thicknesses
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