956 research outputs found

    Magnetic domain wall propagation in a submicron spin-valve stripe: influence of the pinned layer

    Full text link
    The propagation of a domain wall in a submicron ferromagnetic spin-valve stripe is investigated using giant magnetoresistance. A notch in the stripe efficiently traps an injected wall stopping the domain propagation. The authors show that the magnetic field at which the wall is depinned displays a stochastic nature. Moreover, the depinning statistics are significantly different for head to head and tail-to-tail domain walls. This is attributed to the dipolar field generated in the vicinity of the notch by the pinned layer of the spin-valve

    360 degree domain wall generation in the soft layer of magnetic tunnel junctions

    Full text link
    High spatial resolution X-ray photo-emission electron microscopy technique has been used to study the influence of the dipolar coupling taking place between the NiFe and the Co ferromagnetic electrodes of micron sized, elliptical shaped magnetic tunnel junctions. The chemical selectivity of this technique allows to observe independently the magnetic domain structure in each ferromagnetic electrode. The combination of this powerful imaging technique with micromagnetic simulations allows to evidence that a 360 degree domain wall can be stabilized in the NiFe soft layer. In this letter, we discuss the origin and the formation conditions of those 360 degree domain walls evidenced experimentally and numerically

    Producing holograms of reacting sprays in liquid propellant rocket engines Final report

    Get PDF
    Holograms and laser-illuminated photography of reacting sprays in liquid propellant rocket engine

    Strain balanced quantum posts

    Get PDF
    Quantum posts are assembled by epitaxial growth of closely spaced quantum dot layers, modulating the composition of a semiconductor alloy, typically InGaAs. In contrast with most self-assembled nanostructures, the height of quantum posts can be controlled with nanometer precision, up to a maximum value limited by the accumulated stress due to the lattice mismatch. Here we present a strain compensation technique based on the controlled incorporation of phosphorous, which substantially increases the maximum attainable quantum post height. The luminescence from the resulting nanostructures presents giant linear polarization anisotropy.Comment: Submitted to Applied Physics Letters (7th March 2011). 4 pages, 4 figure

    Charge control in laterally coupled double quantum dots

    Get PDF
    We investigate the electronic and optical properties of InAs double quantum dots grown on GaAs (001) and laterally aligned along the [110] crystal direction. The emission spectrum has been investigated as a function of a lateral electric field applied along the quantum dot pair mutual axis. The number of confined electrons can be controlled with the external bias leading to sharp energy shifts which we use to identify the emission from neutral and charged exciton complexes. Quantum tunnelling of these electrons is proposed to explain the reversed ordering of the trion emission lines as compared to that of excitons in our system.Comment: 4 pages, 4 figures submitted to PRB Rapid Com

    A statistical approach to violin evaluation

    Get PDF
    Comparing violins requires competence and involves both subjective and objective evaluations. In this manuscript, vibration tests were performed on a set of 25 violins, both historical and new. The resulting bridge admittances were modeled in the low and mid-frequency ranges through a set of objective features. Once projected into the new representation, the bridge admittances of three historical violins made by Stradivari and a famous reproduction revealed high similarity. PCA highlighted the importance of signature mode frequencies, bridge hill behavior, and signature mode amplitudes in distinguishing different violins

    Small Renal Masses: Incidental Diagnosis, Clinical Symptoms, and Prognostic Factors

    Get PDF
    Introduction. The small renal masses (SRMs) have increased over the past two decades due to more liberal use of imaging techniques. SRMs have allowed discussions regarding their prognostic, diagnosis, and therapeutic approach. Materials and methods. Clinical presentation, incidental diagnosis, and prognosis factors of SRMs are discussed in this review. Results. SRMs are defined as lesions less than 4 cm in diameter. SRM could be benign, and most malignant SMRs are low stage and low grade. Clinical symptoms like hematuria are very rare, being diagnosed by chance (incidental) in most cases. Size, stage, and grade are still the most consistent prognosis factors in (RCC). An enhanced contrast SRM that grows during active surveillance is clearly malignant, and its aggressive potential increases in those greater than 3 cm. Clear cell carcinoma is the most frequent cellular type of malign SRM. Conclusions. Only some SRMs are benign. The great majority of malign SRMs have good prognosis (low stage and grade, no metastasis) with open or laparoscopic surgical treatment (nephron sparing techniques). Active surveillance is an accepted attitude in selected cases

    The role of the oxide shell in the chemical functionalization of plasmonic gallium nanoparticles

    Full text link
    S. Catalán-Gómez, M. Briones, A. Redondo-Cubero, F. J. Palomares, F. Nucciarelli, E. Lorenzo, J. L. Pau, "The role of the oxide shell in the chemical functionalization of plasmonic gallium nanoparticles", SPIE Optics + Optoelectronics Proc. SPIE 10231 (16 May 2017); doi: 10.1117/12.2265665; Copyright 2017 Society of Photo‑Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.Plasmonic Ga nanoparticles (NPs) were thermally oxidized at low temperature in order to increase the native Ga 2 O 3 shell thickness and to improve their stability during the chemical functionalization. The optical, structural and chemical properties of the oxidized NPs have been studied by spectroscopic ellipsometry, scanning electron microscopy, grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. A clear redshift of the peak wavelength is observed with the increasing annealing time due to the Ga 2 O 3 thickness increase, and barely affecting the intensity of the plasmon resonance. This oxide layer enhances the stability of the NPs upon immersion in ethanol or water. The surface sensitivity properties of the as-grown and oxidized NPs were investigated by linking a thiol group from 6-Mercapto-1-hexanol through immersion. Ellipsometric spectra at the reversal polarization handedness (RPH) condition are in agreement with the Langmuir absorption model, indicating the formation of a thiol monolayer on the NPs
    corecore